Bit vectors interpreted as integers. Contribution by Jean Duprat (ENS Lyon). |
Require
Import
Bvector.
Require
Import
ZArith.
Require
Export
Zpower.
Require
Import
Omega.
Section
VALUE_OF_BOOLEAN_VECTORS.
Definition
bit_value (b:bool) : Z :=
match b with
| true => 1%Z
| false => 0%Z
end.
Lemma
binary_value : forall n:nat, Bvector n -> Z.
Proof
.
simple induction n; intros.
exact 0%Z.
inversion H0.
exact (bit_value a + 2 * H H2)%Z.
Defined
.
Lemma
two_compl_value : forall n:nat, Bvector (S n) -> Z.
Proof
.
simple induction n; intros.
inversion H.
exact (- bit_value a)%Z.
inversion H0.
exact (bit_value a + 2 * H H2)%Z.
Defined
.
End
VALUE_OF_BOOLEAN_VECTORS.
Section
ENCODING_VALUE.
Definition
Zmod2 (z:Z) :=
match z with
| Z0 => 0%Z
| Zpos p => match p with
| xI q => Zpos q
| xO q => Zpos q
| xH => 0%Z
end
| Zneg p =>
match p with
| xI q => (Zneg q - 1)%Z
| xO q => Zneg q
| xH => (-1)%Z
end
end.
Lemma
Zmod2_twice :
forall z:Z, z = (2 * Zmod2 z + bit_value (Zeven.Zodd_bool z))%Z.
Proof
.
destruct z; simpl in |- *.
trivial.
destruct p; simpl in |- *; trivial.
destruct p; simpl in |- *.
destruct p as [p| p| ]; simpl in |- *.
rewrite <- (Pdouble_minus_one_o_succ_eq_xI p); trivial.
trivial.
trivial.
trivial.
trivial.
Qed
.
Lemma
Z_to_binary : forall n:nat, Z -> Bvector n.
Proof
.
simple induction n; intros.
exact Bnil.
exact (Bcons (Zeven.Zodd_bool H0) n0 (H (Zeven.Zdiv2 H0))).
Defined
.
Lemma
Z_to_two_compl : forall n:nat, Z -> Bvector (S n).
Proof
.
simple induction n; intros.
exact (Bcons (Zeven.Zodd_bool H) 0 Bnil).
exact (Bcons (Zeven.Zodd_bool H0) (S n0) (H (Zmod2 H0))).
Defined
.
End
ENCODING_VALUE.
Section
Z_BRIC_A_BRAC.
Lemma
binary_value_Sn :
forall (n:nat) (b:bool) (bv:Bvector n),
binary_value (S n) (Vcons bool b n bv) =
(bit_value b + 2 * binary_value n bv)%Z.
Proof
.
intros; auto.
Qed
.
Lemma
Z_to_binary_Sn :
forall (n:nat) (b:bool) (z:Z),
(z >= 0)%Z ->
Z_to_binary (S n) (bit_value b + 2 * z) = Bcons b n (Z_to_binary n z).
Proof
.
destruct b; destruct z; simpl in |- *; auto.
intro H; elim H; trivial.
Qed
.
Lemma
binary_value_pos :
forall (n:nat) (bv:Bvector n), (binary_value n bv >= 0)%Z.
Proof
.
induction bv as [| a n v IHbv]; simpl in |- *.
omega.
destruct a; destruct (binary_value n v); simpl in |- *; auto.
auto with zarith.
Qed
.
Lemma
two_compl_value_Sn :
forall (n:nat) (bv:Bvector (S n)) (b:bool),
two_compl_value (S n) (Bcons b (S n) bv) =
(bit_value b + 2 * two_compl_value n bv)%Z.
Proof
.
intros; auto.
Qed
.
Lemma
Z_to_two_compl_Sn :
forall (n:nat) (b:bool) (z:Z),
Z_to_two_compl (S n) (bit_value b + 2 * z) =
Bcons b (S n) (Z_to_two_compl n z).
Proof
.
destruct b; destruct z as [| p| p]; auto.
destruct p as [p| p| ]; auto.
destruct p as [p| p| ]; simpl in |- *; auto.
intros; rewrite (Psucc_o_double_minus_one_eq_xO p); trivial.
Qed
.
Lemma
Z_to_binary_Sn_z :
forall (n:nat) (z:Z),
Z_to_binary (S n) z =
Bcons (Zeven.Zodd_bool z) n (Z_to_binary n (Zeven.Zdiv2 z)).
Proof
.
intros; auto.
Qed
.
Lemma
Z_div2_value :
forall z:Z,
(z >= 0)%Z -> (bit_value (Zeven.Zodd_bool z) + 2 * Zeven.Zdiv2 z)%Z = z.
Proof
.
destruct z as [| p| p]; auto.
destruct p; auto.
intro H; elim H; trivial.
Qed
.
Lemma
Pdiv2 : forall z:Z, (z >= 0)%Z -> (Zeven.Zdiv2 z >= 0)%Z.
Proof
.
destruct z as [| p| p].
auto.
destruct p; auto.
simpl in |- *; intros; omega.
intro H; elim H; trivial.
Qed
.
Lemma
Zdiv2_two_power_nat :
forall (z:Z) (n:nat),
(z >= 0)%Z ->
(z < two_power_nat (S n))%Z -> (Zeven.Zdiv2 z < two_power_nat n)%Z.
Proof
.
intros.
cut (2 * Zeven.Zdiv2 z < 2 * two_power_nat n)%Z; intros.
omega.
rewrite <- two_power_nat_S.
destruct (Zeven.Zeven_odd_dec z); intros.
rewrite <- Zeven.Zeven_div2; auto.
generalize (Zeven.Zodd_div2 z H z0); omega.
Qed
.
Lemma
Z_to_two_compl_Sn_z :
forall (n:nat) (z:Z),
Z_to_two_compl (S n) z =
Bcons (Zeven.Zodd_bool z) (S n) (Z_to_two_compl n (Zmod2 z)).
Proof
.
intros; auto.
Qed
.
Lemma
Zeven_bit_value :
forall z:Z, Zeven.Zeven z -> bit_value (Zeven.Zodd_bool z) = 0%Z.
Proof
.
destruct z; unfold bit_value in |- *; auto.
destruct p; tauto || (intro H; elim H).
destruct p; tauto || (intro H; elim H).
Qed
.
Lemma
Zodd_bit_value :
forall z:Z, Zeven.Zodd z -> bit_value (Zeven.Zodd_bool z) = 1%Z.
Proof
.
destruct z; unfold bit_value in |- *; auto.
intros; elim H.
destruct p; tauto || (intros; elim H).
destruct p; tauto || (intros; elim H).
Qed
.
Lemma
Zge_minus_two_power_nat_S :
forall (n:nat) (z:Z),
(z >= - two_power_nat (S n))%Z -> (Zmod2 z >= - two_power_nat n)%Z.
Proof
.
intros n z; rewrite (two_power_nat_S n).
generalize (Zmod2_twice z).
destruct (Zeven.Zeven_odd_dec z) as [H| H].
rewrite (Zeven_bit_value z H); intros; omega.
rewrite (Zodd_bit_value z H); intros; omega.
Qed
.
Lemma
Zlt_two_power_nat_S :
forall (n:nat) (z:Z),
(z < two_power_nat (S n))%Z -> (Zmod2 z < two_power_nat n)%Z.
Proof
.
intros n z; rewrite (two_power_nat_S n).
generalize (Zmod2_twice z).
destruct (Zeven.Zeven_odd_dec z) as [H| H].
rewrite (Zeven_bit_value z H); intros; omega.
rewrite (Zodd_bit_value z H); intros; omega.
Qed
.
End
Z_BRIC_A_BRAC.
Section
COHERENT_VALUE.
Lemma
binary_to_Z_to_binary :
forall (n:nat) (bv:Bvector n), Z_to_binary n (binary_value n bv) = bv.
Proof
.
induction bv as [| a n bv IHbv].
auto.
rewrite binary_value_Sn.
rewrite Z_to_binary_Sn.
rewrite IHbv; trivial.
apply binary_value_pos.
Qed
.
Lemma
two_compl_to_Z_to_two_compl :
forall (n:nat) (bv:Bvector n) (b:bool),
Z_to_two_compl n (two_compl_value n (Bcons b n bv)) = Bcons b n bv.
Proof
.
induction bv as [| a n bv IHbv]; intro b.
destruct b; auto.
rewrite two_compl_value_Sn.
rewrite Z_to_two_compl_Sn.
rewrite IHbv; trivial.
Qed
.
Lemma
Z_to_binary_to_Z :
forall (n:nat) (z:Z),
(z >= 0)%Z ->
(z < two_power_nat n)%Z -> binary_value n (Z_to_binary n z) = z.
Proof
.
induction n as [| n IHn].
unfold two_power_nat, shift_nat in |- *; simpl in |- *; intros; omega.
intros; rewrite Z_to_binary_Sn_z.
rewrite binary_value_Sn.
rewrite IHn.
apply Z_div2_value; auto.
apply Pdiv2; trivial.
apply Zdiv2_two_power_nat; trivial.
Qed
.
Lemma
Z_to_two_compl_to_Z :
forall (n:nat) (z:Z),
(z >= - two_power_nat n)%Z ->
(z < two_power_nat n)%Z -> two_compl_value n (Z_to_two_compl n z) = z.
Proof
.
induction n as [| n IHn].
unfold two_power_nat, shift_nat in |- *; simpl in |- *; intros.
assert (z = (-1)%Z \/ z = 0%Z). omega.
intuition; subst z; trivial.
intros; rewrite Z_to_two_compl_Sn_z.
rewrite two_compl_value_Sn.
rewrite IHn.
generalize (Zmod2_twice z); omega.
apply Zge_minus_two_power_nat_S; auto.
apply Zlt_two_power_nat_S; auto.
Qed
.
End
COHERENT_VALUE.