Library Coq.ZArith.Zcompare

Require Export BinPos.
Require Export BinInt.
Require Import Lt.
Require Import Gt.
Require Import Plus.
Require Import Mult.

Open Local Scope Z_scope.

Binary Integers (Pierre Crégut, CNET, Lannion, France)
Comparison on integers

Lemma Zcompare_refl : forall n:Z, (n ?= n) = Eq.
Proof.
intro x; destruct x as [| p| p]; simpl in |- *;
 [ reflexivity | apply Pcompare_refl | rewrite Pcompare_refl; reflexivity ].
Qed.

Lemma Zcompare_Eq_eq : forall n m:Z, (n ?= m) = Eq -> n = m.
Proof.
intros x y; destruct x as [| x'| x']; destruct y as [| y'| y']; simpl in |- *;
 intro H; reflexivity || (try discriminate H);
 [ rewrite (Pcompare_Eq_eq x' y' H); reflexivity
 | rewrite (Pcompare_Eq_eq x' y');
    [ reflexivity | destruct ((x' ?= y')%positive Eq); reflexivity || discriminate ] ].
Qed.

Lemma Zcompare_Eq_iff_eq : forall n m:Z, (n ?= m) = Eq <-> n = m.
Proof.
intros x y; split; intro E;
 [ apply Zcompare_Eq_eq; assumption | rewrite E; apply Zcompare_refl ].
Qed.

Lemma Zcompare_antisym : forall n m:Z, CompOpp (n ?= m) = (m ?= n).
Proof.
intros x y; destruct x; destruct y; simpl in |- *;
 reflexivity || discriminate H || rewrite Pcompare_antisym;
 reflexivity.
Qed.

Lemma Zcompare_Gt_Lt_antisym : forall n m:Z, (n ?= m) = Gt <-> (m ?= n) = Lt.
Proof.
intros x y; split; intro H;
 [ change Lt with (CompOpp Gt) in |- *; rewrite <- Zcompare_antisym; rewrite H; reflexivity | change Gt with (CompOpp Lt) in |- *; rewrite <- Zcompare_antisym; rewrite H; reflexivity ].
Qed.

Transitivity of comparison

Lemma Zcompare_Gt_trans :
 forall n m p:Z, (n ?= m) = Gt -> (m ?= p) = Gt -> (n ?= p) = Gt.
Proof.
intros x y z; case x; case y; case z; simpl in |- *;
 try (intros; discriminate H || discriminate H0); auto with arith;
 [ intros p q r H H0; apply nat_of_P_gt_Gt_compare_complement_morphism;
    unfold gt in |- *; apply lt_trans with (m:= nat_of_P q);
    apply nat_of_P_lt_Lt_compare_morphism; apply ZC1;
    assumption
 | intros p q r; do 3 rewrite <- ZC4; intros H H0;
    apply nat_of_P_gt_Gt_compare_complement_morphism;
    unfold gt in |- *; apply lt_trans with (m:= nat_of_P q);
    apply nat_of_P_lt_Lt_compare_morphism; apply ZC1;
    assumption ].
Qed.

Comparison and opposite

Lemma Zcompare_opp : forall n m:Z, (n ?= m) = (- m ?= - n).
Proof.
intros x y; case x; case y; simpl in |- *; auto with arith; intros;
 rewrite <- ZC4; trivial with arith.
Qed.

Hint Local Resolve Pcompare_refl.

Comparison first-order specification

Lemma Zcompare_Gt_spec :
 forall n m:Z, (n ?= m) = Gt -> exists h : positive, n + - m = Zpos h.
Proof.
intros x y; case x; case y;
 [ simpl in |- *; intros H; discriminate H | simpl in |- *; intros p H; discriminate H | intros p H; exists p; simpl in |- *; auto with arith | intros p H; exists p; simpl in |- *; auto with arith | intros q p H; exists (p - q)%positive; unfold Zplus, Zopp in |- *; unfold Zcompare in H; rewrite H; trivial with arith | intros q p H; exists (p + q)%positive; simpl in |- *; trivial with arith | simpl in |- *; intros p H; discriminate H | simpl in |- *; intros q p H; discriminate H | unfold Zcompare in |- *; intros q p; rewrite <- ZC4; intros H; exists (q - p)%positive; simpl in |- *; rewrite (ZC1 q p H); trivial with arith ].
Qed.

Comparison and addition

Lemma weaken_Zcompare_Zplus_compatible :
 (forall (n m:Z) (p:positive), (Zpos p + n ?= Zpos p + m) = (n ?= m)) ->
 forall n m p:Z, (p + n ?= p + m) = (n ?= m).
Proof.
intros H x y z; destruct z;
 [ reflexivity | apply H | rewrite (Zcompare_opp x y); rewrite Zcompare_opp; do 2 rewrite Zopp_plus_distr; rewrite Zopp_neg; apply H ].
Qed.

Hint Local Resolve ZC4.

Lemma weak_Zcompare_Zplus_compatible :
 forall (n m:Z) (p:positive), (Zpos p + n ?= Zpos p + m) = (n ?= m).
Proof.
intros x y z; case x; case y; simpl in |- *; auto with arith;
 [ intros p; apply nat_of_P_lt_Lt_compare_complement_morphism; apply ZL17
 | intros p; ElimPcompare z p; intros E; rewrite E; auto with arith;
    apply nat_of_P_gt_Gt_compare_complement_morphism;
    rewrite nat_of_P_minus_morphism;
    [ unfold gt in |- *; apply ZL16 | assumption ]
 | intros p; ElimPcompare z p; intros E; auto with arith;
    apply nat_of_P_gt_Gt_compare_complement_morphism;
    unfold gt in |- *; apply ZL17
 | intros p q; ElimPcompare q p; intros E; rewrite E;
    [ rewrite (Pcompare_Eq_eq q p E); apply Pcompare_refl
    | apply nat_of_P_lt_Lt_compare_complement_morphism;
       do 2 rewrite nat_of_P_plus_morphism; apply plus_lt_compat_l;
       apply nat_of_P_lt_Lt_compare_morphism with (1 := E)
    | apply nat_of_P_gt_Gt_compare_complement_morphism; unfold gt in |- *;
       do 2 rewrite nat_of_P_plus_morphism; apply plus_lt_compat_l;
       exact (nat_of_P_gt_Gt_compare_morphism q p E) ]
 | intros p q; ElimPcompare z p; intros E; rewrite E; auto with arith;
    apply nat_of_P_gt_Gt_compare_complement_morphism;
    rewrite nat_of_P_minus_morphism;
    [ unfold gt in |- *; apply lt_trans with (m:= nat_of_P z);
       [ apply ZL16 | apply ZL17 ]
    | assumption ]
 | intros p; ElimPcompare z p; intros E; rewrite E; auto with arith;
    simpl in |- *; apply nat_of_P_lt_Lt_compare_complement_morphism;
    rewrite nat_of_P_minus_morphism; [ apply ZL16 | assumption ]
 | intros p q; ElimPcompare z q; intros E; rewrite E; auto with arith;
    simpl in |- *; apply nat_of_P_lt_Lt_compare_complement_morphism;
    rewrite nat_of_P_minus_morphism;
    [ apply lt_trans with (m:= nat_of_P z); [ apply ZL16 | apply ZL17 ]
    | assumption ]
 | intros p q; ElimPcompare z q; intros E0; rewrite E0; ElimPcompare z p;
    intros E1; rewrite E1; ElimPcompare q p; intros E2;
    rewrite E2; auto with arith;
    [ absurd ((q ?= p)%positive Eq = Lt);
       [ rewrite <- (Pcompare_Eq_eq z q E0); rewrite <- (Pcompare_Eq_eq z p E1); rewrite (Pcompare_refl z); discriminate | assumption ]
    | absurd ((q ?= p)%positive Eq = Gt);
       [ rewrite <- (Pcompare_Eq_eq z q E0); rewrite <- (Pcompare_Eq_eq z p E1); rewrite (Pcompare_refl z); discriminate | assumption ]
    | absurd ((z ?= p)%positive Eq = Lt);
       [ rewrite (Pcompare_Eq_eq z q E0); rewrite <- (Pcompare_Eq_eq q p E2); rewrite (Pcompare_refl q); discriminate | assumption ]
    | absurd ((z ?= p)%positive Eq = Lt);
       [ rewrite (Pcompare_Eq_eq z q E0); rewrite E2; discriminate | assumption ]
    | absurd ((z ?= p)%positive Eq = Gt);
       [ rewrite (Pcompare_Eq_eq z q E0); rewrite <- (Pcompare_Eq_eq q p E2); rewrite (Pcompare_refl q); discriminate | assumption ]
    | absurd ((z ?= p)%positive Eq = Gt);
       [ rewrite (Pcompare_Eq_eq z q E0); rewrite E2; discriminate | assumption ]
    | absurd ((z ?= q)%positive Eq = Lt);
       [ rewrite (Pcompare_Eq_eq z p E1); rewrite (Pcompare_Eq_eq q p E2); rewrite (Pcompare_refl p); discriminate | assumption ]
    | absurd ((p ?= q)%positive Eq = Gt);
       [ rewrite <- (Pcompare_Eq_eq z p E1); rewrite E0; discriminate | apply ZC2; assumption ]
    | simpl in |- *; rewrite (Pcompare_Eq_eq q p E2);
       rewrite (Pcompare_refl (p - z)); auto with arith
    | simpl in |- *; rewrite <- ZC4;
       apply nat_of_P_gt_Gt_compare_complement_morphism;
       rewrite nat_of_P_minus_morphism;
       [ rewrite nat_of_P_minus_morphism;
          [ unfold gt in |- *; apply plus_lt_reg_l with (p:= nat_of_P z);
             rewrite le_plus_minus_r;
             [ rewrite le_plus_minus_r;
                [ apply nat_of_P_lt_Lt_compare_morphism; assumption | apply lt_le_weak; apply nat_of_P_lt_Lt_compare_morphism; assumption ]
             | apply lt_le_weak; apply nat_of_P_lt_Lt_compare_morphism;
                assumption ]
          | apply ZC2; assumption ]
       | apply ZC2; assumption ]
    | simpl in |- *; rewrite <- ZC4;
       apply nat_of_P_lt_Lt_compare_complement_morphism;
       rewrite nat_of_P_minus_morphism;
       [ rewrite nat_of_P_minus_morphism;
          [ apply plus_lt_reg_l with (p:= nat_of_P z);
             rewrite le_plus_minus_r;
             [ rewrite le_plus_minus_r;
                [ apply nat_of_P_lt_Lt_compare_morphism; apply ZC1; assumption | apply lt_le_weak; apply nat_of_P_lt_Lt_compare_morphism; assumption ]
             | apply lt_le_weak; apply nat_of_P_lt_Lt_compare_morphism;
                assumption ]
          | apply ZC2; assumption ]
       | apply ZC2; assumption ]
    | absurd ((z ?= q)%positive Eq = Lt);
       [ rewrite (Pcompare_Eq_eq q p E2); rewrite E1; discriminate | assumption ]
    | absurd ((q ?= p)%positive Eq = Lt);
       [ cut ((q ?= p)%positive Eq = Gt);
          [ intros E; rewrite E; discriminate
          | apply nat_of_P_gt_Gt_compare_complement_morphism;
             unfold gt in |- *; apply lt_trans with (m:= nat_of_P z);
             [ apply nat_of_P_lt_Lt_compare_morphism; apply ZC1; assumption | apply nat_of_P_lt_Lt_compare_morphism; assumption ] ]
       | assumption ]
    | absurd ((z ?= q)%positive Eq = Gt);
       [ rewrite (Pcompare_Eq_eq z p E1); rewrite (Pcompare_Eq_eq q p E2); rewrite (Pcompare_refl p); discriminate | assumption ]
    | absurd ((z ?= q)%positive Eq = Gt);
       [ rewrite (Pcompare_Eq_eq z p E1); rewrite ZC1;
          [ discriminate | assumption ]
       | assumption ]
    | absurd ((z ?= q)%positive Eq = Gt);
       [ rewrite (Pcompare_Eq_eq q p E2); rewrite E1; discriminate | assumption ]
    | absurd ((q ?= p)%positive Eq = Gt);
       [ rewrite ZC1;
          [ discriminate
          | apply nat_of_P_gt_Gt_compare_complement_morphism;
             unfold gt in |- *; apply lt_trans with (m:= nat_of_P z);
             [ apply nat_of_P_lt_Lt_compare_morphism; apply ZC1; assumption | apply nat_of_P_lt_Lt_compare_morphism; assumption ] ]
       | assumption ]
    | simpl in |- *; rewrite (Pcompare_Eq_eq q p E2); apply Pcompare_refl
    | simpl in |- *; apply nat_of_P_gt_Gt_compare_complement_morphism;
       unfold gt in |- *; rewrite nat_of_P_minus_morphism;
       [ rewrite nat_of_P_minus_morphism;
          [ apply plus_lt_reg_l with (p:= nat_of_P p);
             rewrite le_plus_minus_r;
             [ rewrite plus_comm; apply plus_lt_reg_l with (p:= nat_of_P q);
                rewrite plus_assoc; rewrite le_plus_minus_r;
                [ rewrite (plus_comm (nat_of_P q)); apply plus_lt_compat_l; apply nat_of_P_lt_Lt_compare_morphism; assumption | apply lt_le_weak; apply nat_of_P_lt_Lt_compare_morphism; apply ZC1; assumption ]
             | apply lt_le_weak; apply nat_of_P_lt_Lt_compare_morphism;
                apply ZC1; assumption ]
          | assumption ]
       | assumption ]
    | simpl in |- *; apply nat_of_P_lt_Lt_compare_complement_morphism;
       rewrite nat_of_P_minus_morphism;
       [ rewrite nat_of_P_minus_morphism;
          [ apply plus_lt_reg_l with (p:= nat_of_P q);
             rewrite le_plus_minus_r;
             [ rewrite plus_comm; apply plus_lt_reg_l with (p:= nat_of_P p);
                rewrite plus_assoc; rewrite le_plus_minus_r;
                [ rewrite (plus_comm (nat_of_P p)); apply plus_lt_compat_l; apply nat_of_P_lt_Lt_compare_morphism; apply ZC1; assumption | apply lt_le_weak; apply nat_of_P_lt_Lt_compare_morphism; apply ZC1; assumption ]
             | apply lt_le_weak; apply nat_of_P_lt_Lt_compare_morphism;
                apply ZC1; assumption ]
          | assumption ]
       | assumption ] ] ].
Qed.

Lemma Zcompare_plus_compat : forall n m p:Z, (p + n ?= p + m) = (n ?= m).
Proof.
exact (weaken_Zcompare_Zplus_compatible weak_Zcompare_Zplus_compatible).
Qed.

Lemma Zplus_compare_compat :
 forall (r:comparison) (n m p q:Z),
   (n ?= m) = r -> (p ?= q) = r -> (n + p ?= m + q) = r.
Proof.
intros r x y z t; case r;
 [ intros H1 H2; elim (Zcompare_Eq_iff_eq x y); elim (Zcompare_Eq_iff_eq z t);
    intros H3 H4 H5 H6; rewrite H3;
    [ rewrite H5;
       [ elim (Zcompare_Eq_iff_eq (y + t) (y + t)); auto with arith | auto with arith ]
    | auto with arith ]
 | intros H1 H2; elim (Zcompare_Gt_Lt_antisym (y + t) (x + z)); intros H3 H4;
    apply H3; apply Zcompare_Gt_trans with (m:= y + z);
    [ rewrite Zcompare_plus_compat; elim (Zcompare_Gt_Lt_antisym t z); auto with arith | do 2 rewrite <- (Zplus_comm z); rewrite Zcompare_plus_compat; elim (Zcompare_Gt_Lt_antisym y x); auto with arith ]
 | intros H1 H2; apply Zcompare_Gt_trans with (m:= x + t);
    [ rewrite Zcompare_plus_compat; assumption | do 2 rewrite <- (Zplus_comm t); rewrite Zcompare_plus_compat; assumption ] ].
Qed.

Lemma Zcompare_succ_Gt : forall n:Z, (Zsucc n ?= n) = Gt.
Proof.
intro x; unfold Zsucc in |- *; pattern x at 2 in |- *;
 rewrite <- (Zplus_0_r x); rewrite Zcompare_plus_compat;
 reflexivity.
Qed.

Lemma Zcompare_Gt_not_Lt : forall n m:Z, (n ?= m) = Gt <-> (n ?= m + 1) <> Lt.
Proof.
intros x y; split;
 [ intro H; elim_compare x (y + 1);
    [ intro H1; rewrite H1; discriminate
    | intros H1; elim Zcompare_Gt_spec with (1 := H); intros h H2;
       absurd ((nat_of_P h > 0)%nat /\ (nat_of_P h < 1)%nat);
       [ unfold not in |- *; intros H3; elim H3; intros H4 H5;
          absurd (nat_of_P h > 0)%nat;
          [ unfold gt in |- *; apply le_not_lt; apply le_S_n; exact H5 | assumption ]
       | split;
          [ elim (ZL4 h); intros i H3; rewrite H3; apply gt_Sn_O
          | change (nat_of_P h < nat_of_P 1)%nat in |- *;
             apply nat_of_P_lt_Lt_compare_morphism;
             change ((Zpos h ?= 1) = Lt) in |- *; rewrite <- H2;
             rewrite <- (fun m n:Z => Zcompare_plus_compat m n y);
             rewrite (Zplus_comm x); rewrite Zplus_assoc;
             rewrite Zplus_opp_r; simpl in |- *; exact H1 ] ]
    | intros H1; rewrite H1; discriminate ]
 | intros H; elim_compare x (y + 1);
    [ intros H1; elim (Zcompare_Eq_iff_eq x (y + 1)); intros H2 H3;
       rewrite (H2 H1); exact (Zcompare_succ_Gt y)
    | intros H1; absurd ((x ?= y + 1) = Lt); assumption
    | intros H1; apply Zcompare_Gt_trans with (m:= Zsucc y);
       [ exact H1 | exact (Zcompare_succ_Gt y) ] ] ].
Qed.

Successor and comparison

Lemma Zcompare_succ_compat : forall n m:Z, (Zsucc n ?= Zsucc m) = (n ?= m).
Proof.
intros n m; unfold Zsucc in |- *; do 2 rewrite (fun t:Z => Zplus_comm t 1);
 rewrite Zcompare_plus_compat; auto with arith.
Qed.
 
Multiplication and comparison

Lemma Zcompare_mult_compat :
 forall (p:positive) (n m:Z), (Zpos p * n ?= Zpos p * m) = (n ?= m).
Proof.
intros x; induction x as [p H| p H| ];
 [ intros y z; cut (Zpos (xI p) = Zpos p + Zpos p + 1);
    [ intros E; rewrite E; do 4 rewrite Zmult_plus_distr_l;
       do 2 rewrite Zmult_1_l; apply Zplus_compare_compat;
       [ apply Zplus_compare_compat; apply H | trivial with arith ]
    | simpl in |- *; rewrite (Pplus_diag p); trivial with arith ]
 | intros y z; cut (Zpos (xO p) = Zpos p + Zpos p);
    [ intros E; rewrite E; do 2 rewrite Zmult_plus_distr_l; apply Zplus_compare_compat; apply H | simpl in |- *; rewrite (Pplus_diag p); trivial with arith ]
 | intros y z; do 2 rewrite Zmult_1_l; trivial with arith ].
Qed.

Reverting x ?= y to trichotomy

Lemma rename :
 forall (A:Set) (P:A -> Prop) (x:A), (forall y:A, x = y -> P y) -> P x.
Proof.
auto with arith.
Qed.

Lemma Zcompare_elim :
 forall (c1 c2 c3:Prop) (n m:Z),
   (n = m -> c1) ->
   (n < m -> c2) ->
   (n > m -> c3) -> match n ?= m with
                    | Eq => c1
                    | Lt => c2
                    | Gt => c3
                    end.
Proof.
intros c1 c2 c3 x y; intros.
apply rename with (x:= x ?= y); intro r; elim r;
 [ intro; apply H; apply (Zcompare_Eq_eq x y); assumption | unfold Zlt in H0; assumption | unfold Zgt in H1; assumption ].
Qed.

Lemma Zcompare_eq_case :
 forall (c1 c2 c3:Prop) (n m:Z),
   c1 -> n = m -> match n ?= m with
                  | Eq => c1
                  | Lt => c2
                  | Gt => c3
                  end.
Proof.
intros c1 c2 c3 x y; intros.
rewrite H0; rewrite Zcompare_refl.
assumption.
Qed.

Decompose an egality between two ?= relations into 3 implications

Lemma Zcompare_egal_dec :
 forall n m p q:Z,
   (n < m -> p < q) ->
   ((n ?= m) = Eq -> (p ?= q) = Eq) ->
   (n > m -> p > q) -> (n ?= m) = (p ?= q).
Proof.
intros x1 y1 x2 y2.
unfold Zgt in |- *; unfold Zlt in |- *; case (x1 ?= y1); case (x2 ?= y2);
 auto with arith; symmetry in |- *; auto with arith.
Qed.

Relating x ?= y to Zle, Zlt, Zge or Zgt

Lemma Zle_compare :
 forall n m:Z,
   n <= m -> match n ?= m with
             | Eq => True
             | Lt => True
             | Gt => False
             end.
Proof.
intros x y; unfold Zle in |- *; elim (x ?= y); auto with arith.
Qed.

Lemma Zlt_compare :
 forall n m:Z,
   n < m -> match n ?= m with
            | Eq => False
            | Lt => True
            | Gt => False
            end.
Proof.
intros x y; unfold Zlt in |- *; elim (x ?= y); intros;
 discriminate || trivial with arith.
Qed.

Lemma Zge_compare :
 forall n m:Z,
   n >= m -> match n ?= m with
             | Eq => True
             | Lt => False
             | Gt => True
             end.
Proof.
intros x y; unfold Zge in |- *; elim (x ?= y); auto with arith.
Qed.

Lemma Zgt_compare :
 forall n m:Z,
   n > m -> match n ?= m with
            | Eq => False
            | Lt => False
            | Gt => True
            end.
Proof.
intros x y; unfold Zgt in |- *; elim (x ?= y); intros;
 discriminate || trivial with arith.
Qed.

Lemma Zmult_compare_compat_l :
 forall n m p:Z, p > 0 -> (n ?= m) = (p * n ?= p * m).
Proof.
intros x y z H; destruct z.
  discriminate H.
  rewrite Zcompare_mult_compat; reflexivity.
  discriminate H.
Qed.

Lemma Zmult_compare_compat_r :
 forall n m p:Z, p > 0 -> (n ?= m) = (n * p ?= m * p).
Proof.
intros x y z H; rewrite (Zmult_comm x z); rewrite (Zmult_comm y z);
 apply Zmult_compare_compat_l; assumption.
Qed.


Index
This page has been generated by coqdoc