Library Coq.Reals.RiemannInt

 
Require Import Rfunctions.
Require Import SeqSeries.
Require Import Ranalysis.
Require Import Rbase.
Require Import RiemannInt_SF.
Require Import Classical_Prop.
Require Import Classical_Pred_Type.
Require Import Max. Open Local Scope R_scope.

Set Implicit Arguments.

Definition Riemann_integrable (f:R -> R) (a b:R) : Type :=
  forall eps:posreal,
    sigT
      (fun phi:StepFun a b =>
         sigT
           (fun psi:StepFun a b =>
              (forall t:R,
                 Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t) /\
              Rabs (RiemannInt_SF psi) < eps)).

Definition phi_sequence (un:nat -> posreal) (f:R -> R)
  (a b:R) (pr:Riemann_integrable f a b) (n:nat) :=
  projT1 (pr (un n)).

Lemma phi_sequence_prop :
 forall (un:nat -> posreal) (f:R -> R) (a b:R) (pr:Riemann_integrable f a b)
   (N:nat),
   sigT
     (fun psi:StepFun a b =>
        (forall t:R,
           Rmin a b <= t <= Rmax a b ->
           Rabs (f t - phi_sequence un pr N t) <= psi t) /\
        Rabs (RiemannInt_SF psi) < un N).
intros; apply (projT2 (pr (un N))).
Qed.

Lemma RiemannInt_P1 :
 forall (f:R -> R) (a b:R),
   Riemann_integrable f a b -> Riemann_integrable f b a.
unfold Riemann_integrable in |- *; intros; elim (X eps); clear X; intros;
 elim p; clear p; intros; apply existT with (mkStepFun (StepFun_P6 (pre x)));
 apply existT with (mkStepFun (StepFun_P6 (pre x0)));
 elim p; clear p; intros; split.
intros; apply (H t); elim H1; clear H1; intros; split;
 [ apply Rle_trans with (Rmin b a); try assumption; right; unfold Rmin in |- * | apply Rle_trans with (Rmax b a); try assumption; right; unfold Rmax in |- * ];
 (case (Rle_dec a b); case (Rle_dec b a); intros;
   try reflexivity || apply Rle_antisym;
   [ assumption | assumption | auto with real | auto with real ]).
generalize H0; unfold RiemannInt_SF in |- *; case (Rle_dec a b);
 case (Rle_dec b a); intros;
 (replace
   (Int_SF (subdivision_val (mkStepFun (StepFun_P6 (pre x0))))
      (subdivision (mkStepFun (StepFun_P6 (pre x0))))) with
   (Int_SF (subdivision_val x0) (subdivision x0));
   [ idtac
   | apply StepFun_P17 with (fe x0) a b;
      [ apply StepFun_P1 | apply StepFun_P2; apply (StepFun_P1 (mkStepFun (StepFun_P6 (pre x0)))) ] ]).
apply H1.
rewrite Rabs_Ropp; apply H1.
rewrite Rabs_Ropp in H1; apply H1.
apply H1.
Qed.

Lemma RiemannInt_P2 :
 forall (f:R -> R) (a b:R) (un:nat -> posreal) (vn wn:nat -> StepFun a b),
   Un_cv un 0 ->
   a <= b ->
   (forall n:nat,
      (forall t:R, Rmin a b <= t <= Rmax a b -> Rabs (f t - vn n t) <= wn n t) /\
      Rabs (RiemannInt_SF (wn n)) < un n) ->
   sigT (fun l:R => Un_cv (fun N:nat => RiemannInt_SF (vn N)) l).
intros; apply R_complete; unfold Un_cv in H; unfold Cauchy_crit in |- *;
 intros; assert (H3 : 0 < eps / 2).
unfold Rdiv in |- *; apply Rmult_lt_0_compat;
 [ assumption | apply Rinv_0_lt_compat; prove_sup0 ].
elim (H _ H3); intros N0 H4; exists N0; intros; unfold R_dist in |- *;
 unfold R_dist in H4; elim (H1 n); elim (H1 m); intros;
 replace (RiemannInt_SF (vn n) - RiemannInt_SF (vn m)) with
  (RiemannInt_SF (vn n) + -1 * RiemannInt_SF (vn m));
 [ idtac | ring ]; rewrite <- StepFun_P30;
 apply Rle_lt_trans with
  (RiemannInt_SF
     (mkStepFun (StepFun_P32 (mkStepFun (StepFun_P28 (-1) (vn n) (vn m)))))).
apply StepFun_P34; assumption.
apply Rle_lt_trans with
 (RiemannInt_SF (mkStepFun (StepFun_P28 1 (wn n) (wn m)))).
apply StepFun_P37; try assumption.
intros; simpl in |- *;
 apply Rle_trans with (Rabs (vn n x - f x) + Rabs (f x - vn m x)).
replace (vn n x + -1 * vn m x) with (vn n x - f x + (f x - vn m x));
 [ apply Rabs_triang | ring ].
assert (H12 : Rmin a b = a).
unfold Rmin in |- *; case (Rle_dec a b); intro;
 [ reflexivity | elim n0; assumption ].
assert (H13 : Rmax a b = b).
unfold Rmax in |- *; case (Rle_dec a b); intro;
 [ reflexivity | elim n0; assumption ].
rewrite <- H12 in H11; pattern b at 2 in H11; rewrite <- H13 in H11;
 rewrite Rmult_1_l; apply Rplus_le_compat.
rewrite <- Rabs_Ropp; rewrite Ropp_minus_distr; apply H9.
elim H11; intros; split; left; assumption.
apply H7.
elim H11; intros; split; left; assumption.
rewrite StepFun_P30; rewrite Rmult_1_l; apply Rlt_trans with (un n + un m).
apply Rle_lt_trans with
 (Rabs (RiemannInt_SF (wn n)) + Rabs (RiemannInt_SF (wn m))).
apply Rplus_le_compat; apply RRle_abs.
apply Rplus_lt_compat; assumption.
apply Rle_lt_trans with (Rabs (un n) + Rabs (un m)).
apply Rplus_le_compat; apply RRle_abs.
replace (pos (un n)) with (un n - 0); [ idtac | ring ];
 replace (pos (un m)) with (un m - 0); [ idtac | ring ];
 rewrite (double_var eps); apply Rplus_lt_compat; apply H4;
 assumption.
Qed.

Lemma RiemannInt_P3 :
 forall (f:R -> R) (a b:R) (un:nat -> posreal) (vn wn:nat -> StepFun a b),
   Un_cv un 0 ->
   (forall n:nat,
      (forall t:R, Rmin a b <= t <= Rmax a b -> Rabs (f t - vn n t) <= wn n t) /\
      Rabs (RiemannInt_SF (wn n)) < un n) ->
   sigT (fun l:R => Un_cv (fun N:nat => RiemannInt_SF (vn N)) l).
intros; case (Rle_dec a b); intro.
apply RiemannInt_P2 with f un wn; assumption.
assert (H1 : b <= a); auto with real.
set (vn':= fun n:nat => mkStepFun (StepFun_P6 (pre (vn n))));
 set (wn':= fun n:nat => mkStepFun (StepFun_P6 (pre (wn n))));
 assert
  (H2 :
   forall n:nat,
     (forall t:R,
        Rmin b a <= t <= Rmax b a -> Rabs (f t - vn' n t) <= wn' n t) /\
     Rabs (RiemannInt_SF (wn' n)) < un n).
intro; elim (H0 n0); intros; split.
intros; apply (H2 t); elim H4; clear H4; intros; split;
 [ apply Rle_trans with (Rmin b a); try assumption; right; unfold Rmin in |- * | apply Rle_trans with (Rmax b a); try assumption; right; unfold Rmax in |- * ];
 (case (Rle_dec a b); case (Rle_dec b a); intros;
   try reflexivity || apply Rle_antisym;
   [ assumption | assumption | auto with real | auto with real ]).
generalize H3; unfold RiemannInt_SF in |- *; case (Rle_dec a b);
 case (Rle_dec b a); unfold wn' in |- *; intros;
 (replace
   (Int_SF (subdivision_val (mkStepFun (StepFun_P6 (pre (wn n0)))))
      (subdivision (mkStepFun (StepFun_P6 (pre (wn n0)))))) with
   (Int_SF (subdivision_val (wn n0)) (subdivision (wn n0)));
   [ idtac
   | apply StepFun_P17 with (fe (wn n0)) a b;
      [ apply StepFun_P1 | apply StepFun_P2; apply (StepFun_P1 (mkStepFun (StepFun_P6 (pre (wn n0))))) ] ]).
apply H4.
rewrite Rabs_Ropp; apply H4.
rewrite Rabs_Ropp in H4; apply H4.
apply H4.
assert (H3:= RiemannInt_P2 _ _ _ _ H H1 H2); elim H3; intros;
 apply existT with (- x); unfold Un_cv in |- *; unfold Un_cv in p;
 intros; elim (p _ H4); intros; exists x0; intros;
 generalize (H5 _ H6); unfold R_dist, RiemannInt_SF in |- *;
 case (Rle_dec b a); case (Rle_dec a b); intros.
elim n; assumption.
unfold vn' in H7;
 replace (Int_SF (subdivision_val (vn n0)) (subdivision (vn n0))) with
  (Int_SF (subdivision_val (mkStepFun (StepFun_P6 (pre (vn n0)))))
     (subdivision (mkStepFun (StepFun_P6 (pre (vn n0))))));
 [ unfold Rminus in |- *; rewrite Ropp_involutive; rewrite <- Rabs_Ropp;
    rewrite Ropp_plus_distr; rewrite Ropp_involutive;
    apply H7
 | symmetry in |- *; apply StepFun_P17 with (fe (vn n0)) a b;
    [ apply StepFun_P1 | apply StepFun_P2; apply (StepFun_P1 (mkStepFun (StepFun_P6 (pre (vn n0))))) ] ].
elim n1; assumption.
elim n2; assumption.
Qed.

Lemma RiemannInt_exists :
 forall (f:R -> R) (a b:R) (pr:Riemann_integrable f a b)
   (un:nat -> posreal),
   Un_cv un 0 ->
   sigT
     (fun l:R => Un_cv (fun N:nat => RiemannInt_SF (phi_sequence un pr N)) l).
intros f; intros;
 apply RiemannInt_P3 with
  f un (fun n:nat => projT1 (phi_sequence_prop un pr n));
 [ apply H | intro; apply (projT2 (phi_sequence_prop un pr n)) ].
Qed.

Lemma RiemannInt_P4 :
 forall (f:R -> R) (a b l:R) (pr1 pr2:Riemann_integrable f a b)
   (un vn:nat -> posreal),
   Un_cv un 0 ->
   Un_cv vn 0 ->
   Un_cv (fun N:nat => RiemannInt_SF (phi_sequence un pr1 N)) l ->
   Un_cv (fun N:nat => RiemannInt_SF (phi_sequence vn pr2 N)) l.
unfold Un_cv in |- *; unfold R_dist in |- *; intros f; intros;
 assert (H3 : 0 < eps / 3).
unfold Rdiv in |- *; apply Rmult_lt_0_compat;
 [ assumption | apply Rinv_0_lt_compat; prove_sup0 ].
elim (H _ H3); clear H; intros N0 H; elim (H0 _ H3); clear H0; intros N1 H0;
 elim (H1 _ H3); clear H1; intros N2 H1; set (N:= max (max N0 N1) N2);
 exists N; intros;
 apply Rle_lt_trans with
  (Rabs
     (RiemannInt_SF (phi_sequence vn pr2 n) -
      RiemannInt_SF (phi_sequence un pr1 n)) +
   Rabs (RiemannInt_SF (phi_sequence un pr1 n) - l)).
replace (RiemannInt_SF (phi_sequence vn pr2 n) - l) with
 (RiemannInt_SF (phi_sequence vn pr2 n) -
  RiemannInt_SF (phi_sequence un pr1 n) +
  (RiemannInt_SF (phi_sequence un pr1 n) - l)); [ apply Rabs_triang | ring ].
replace eps with (2 * (eps / 3) + eps / 3).
apply Rplus_lt_compat.
elim (phi_sequence_prop vn pr2 n); intros psi_vn H5;
 elim (phi_sequence_prop un pr1 n); intros psi_un H6;
 replace
  (RiemannInt_SF (phi_sequence vn pr2 n) -
   RiemannInt_SF (phi_sequence un pr1 n)) with
  (RiemannInt_SF (phi_sequence vn pr2 n) +
   -1 * RiemannInt_SF (phi_sequence un pr1 n)); [ idtac | ring ];
 rewrite <- StepFun_P30.
case (Rle_dec a b); intro.
apply Rle_lt_trans with
 (RiemannInt_SF
    (mkStepFun
       (StepFun_P32
          (mkStepFun
             (StepFun_P28 (-1) (phi_sequence vn pr2 n)
                (phi_sequence un pr1 n)))))).
apply StepFun_P34; assumption.
apply Rle_lt_trans with
 (RiemannInt_SF (mkStepFun (StepFun_P28 1 psi_un psi_vn))).
apply StepFun_P37; try assumption; intros; simpl in |- *; rewrite Rmult_1_l;
 apply Rle_trans with
  (Rabs (phi_sequence vn pr2 n x - f x) +
   Rabs (f x - phi_sequence un pr1 n x)).
replace (phi_sequence vn pr2 n x + -1 * phi_sequence un pr1 n x) with
 (phi_sequence vn pr2 n x - f x + (f x - phi_sequence un pr1 n x));
 [ apply Rabs_triang | ring ].
assert (H10 : Rmin a b = a).
unfold Rmin in |- *; case (Rle_dec a b); intro;
 [ reflexivity | elim n0; assumption ].
assert (H11 : Rmax a b = b).
unfold Rmax in |- *; case (Rle_dec a b); intro;
 [ reflexivity | elim n0; assumption ].
rewrite (Rplus_comm (psi_un x)); apply Rplus_le_compat.
rewrite <- Rabs_Ropp; rewrite Ropp_minus_distr; elim H5; intros; apply H8.
rewrite H10; rewrite H11; elim H7; intros; split; left; assumption.
elim H6; intros; apply H8.
rewrite H10; rewrite H11; elim H7; intros; split; left; assumption.
rewrite StepFun_P30; rewrite Rmult_1_l; rewrite double; apply Rplus_lt_compat.
apply Rlt_trans with (pos (un n)).
elim H6; intros; apply Rle_lt_trans with (Rabs (RiemannInt_SF psi_un)).
apply RRle_abs.
assumption.
replace (pos (un n)) with (Rabs (un n - 0));
 [ apply H; unfold ge in |- *; apply le_trans with N; try assumption; unfold N in |- *; apply le_trans with (max N0 N1); apply le_max_l | unfold Rminus in |- *; rewrite Ropp_0; rewrite Rplus_0_r; apply Rabs_right; apply Rle_ge; left; apply (cond_pos (un n)) ].
apply Rlt_trans with (pos (vn n)).
elim H5; intros; apply Rle_lt_trans with (Rabs (RiemannInt_SF psi_vn)).
apply RRle_abs; assumption.
assumption.
replace (pos (vn n)) with (Rabs (vn n - 0));
 [ apply H0; unfold ge in |- *; apply le_trans with N; try assumption;
    unfold N in |- *; apply le_trans with (max N0 N1);
    [ apply le_max_r | apply le_max_l ]
 | unfold Rminus in |- *; rewrite Ropp_0; rewrite Rplus_0_r; apply Rabs_right;
    apply Rle_ge; left; apply (cond_pos (vn n)) ].
rewrite StepFun_P39; rewrite Rabs_Ropp;
 apply Rle_lt_trans with
  (RiemannInt_SF
     (mkStepFun
        (StepFun_P32
           (mkStepFun
              (StepFun_P6
                 (pre
                    (mkStepFun
                       (StepFun_P28 (-1) (phi_sequence vn pr2 n)
                          (phi_sequence un pr1 n))))))))).
apply StepFun_P34; try auto with real.
apply Rle_lt_trans with
 (RiemannInt_SF
    (mkStepFun (StepFun_P6 (pre (mkStepFun (StepFun_P28 1 psi_vn psi_un)))))).
apply StepFun_P37.
auto with real.
intros; simpl in |- *; rewrite Rmult_1_l;
 apply Rle_trans with
  (Rabs (phi_sequence vn pr2 n x - f x) +
   Rabs (f x - phi_sequence un pr1 n x)).
replace (phi_sequence vn pr2 n x + -1 * phi_sequence un pr1 n x) with
 (phi_sequence vn pr2 n x - f x + (f x - phi_sequence un pr1 n x));
 [ apply Rabs_triang | ring ].
assert (H10 : Rmin a b = b).
unfold Rmin in |- *; case (Rle_dec a b); intro;
 [ elim n0; assumption | reflexivity ].
assert (H11 : Rmax a b = a).
unfold Rmax in |- *; case (Rle_dec a b); intro;
 [ elim n0; assumption | reflexivity ].
apply Rplus_le_compat.
rewrite <- Rabs_Ropp; rewrite Ropp_minus_distr; elim H5; intros; apply H8.
rewrite H10; rewrite H11; elim H7; intros; split; left; assumption.
elim H6; intros; apply H8.
rewrite H10; rewrite H11; elim H7; intros; split; left; assumption.
rewrite <-
 (Ropp_involutive
    (RiemannInt_SF
       (mkStepFun
          (StepFun_P6 (pre (mkStepFun (StepFun_P28 1 psi_vn psi_un)))))))
 ; rewrite <- StepFun_P39; rewrite StepFun_P30; rewrite Rmult_1_l;
 rewrite double; rewrite Ropp_plus_distr; apply Rplus_lt_compat.
apply Rlt_trans with (pos (vn n)).
elim H5; intros; apply Rle_lt_trans with (Rabs (RiemannInt_SF psi_vn)).
rewrite <- Rabs_Ropp; apply RRle_abs.
assumption.
replace (pos (vn n)) with (Rabs (vn n - 0));
 [ apply H0; unfold ge in |- *; apply le_trans with N; try assumption;
    unfold N in |- *; apply le_trans with (max N0 N1);
    [ apply le_max_r | apply le_max_l ]
 | unfold R_dist in |- *; unfold Rminus in |- *; rewrite Ropp_0;
    rewrite Rplus_0_r; apply Rabs_right; apply Rle_ge;
    left; apply (cond_pos (vn n)) ].
apply Rlt_trans with (pos (un n)).
elim H6; intros; apply Rle_lt_trans with (Rabs (RiemannInt_SF psi_un)).
rewrite <- Rabs_Ropp; apply RRle_abs; assumption.
assumption.
replace (pos (un n)) with (Rabs (un n - 0));
 [ apply H; unfold ge in |- *; apply le_trans with N; try assumption; unfold N in |- *; apply le_trans with (max N0 N1); apply le_max_l | unfold Rminus in |- *; rewrite Ropp_0; rewrite Rplus_0_r; apply Rabs_right; apply Rle_ge; left; apply (cond_pos (un n)) ].
apply H1; unfold ge in |- *; apply le_trans with N; try assumption;
 unfold N in |- *; apply le_max_r.
apply Rmult_eq_reg_l with 3;
 [ unfold Rdiv in |- *; rewrite Rmult_plus_distr_l;
    do 2 rewrite (Rmult_comm 3); repeat rewrite Rmult_assoc;
    rewrite <- Rinv_l_sym; [ ring | discrR ]
 | discrR ].
Qed.

Lemma RinvN_pos : forall n:nat, 0 < / (INR n + 1).
intro; apply Rinv_0_lt_compat; apply Rplus_le_lt_0_compat;
 [ apply pos_INR | apply Rlt_0_1 ].
Qed.

Definition RinvN (N:nat) : posreal := mkposreal _ (RinvN_pos N).
 
Lemma RinvN_cv : Un_cv RinvN 0.
unfold Un_cv in |- *; intros; assert (H0:= archimed (/ eps)); elim H0;
 clear H0; intros; assert (H2 : (0 <= up (/ eps))%Z).
apply le_IZR; left; apply Rlt_trans with (/ eps);
 [ apply Rinv_0_lt_compat; assumption | assumption ].
elim (IZN _ H2); intros; exists x; intros; unfold R_dist in |- *;
 simpl in |- *; unfold Rminus in |- *; rewrite Ropp_0;
 rewrite Rplus_0_r; assert (H5 : 0 < INR n + 1).
apply Rplus_le_lt_0_compat; [ apply pos_INR | apply Rlt_0_1 ].
rewrite Rabs_right;
 [ idtac | left; change (0 < / (INR n + 1)) in |- *; apply Rinv_0_lt_compat; assumption ]; apply Rle_lt_trans with (/ (INR x + 1)).
apply Rle_Rinv.
apply Rplus_le_lt_0_compat; [ apply pos_INR | apply Rlt_0_1 ].
assumption.
do 2 rewrite <- (Rplus_comm 1); apply Rplus_le_compat_l; apply le_INR;
 apply H4.
rewrite <- (Rinv_involutive eps).
apply Rinv_lt_contravar.
apply Rmult_lt_0_compat.
apply Rinv_0_lt_compat; assumption.
apply Rplus_le_lt_0_compat; [ apply pos_INR | apply Rlt_0_1 ].
apply Rlt_trans with (INR x);
 [ rewrite INR_IZR_INZ; rewrite <- H3; apply H0 | pattern (INR x) at 1 in |- *; rewrite <- Rplus_0_r; apply Rplus_lt_compat_l; apply Rlt_0_1 ].
red in |- *; intro; rewrite H6 in H; elim (Rlt_irrefl _ H).
Qed.

Definition RiemannInt (f:R -> R) (a b:R) (pr:Riemann_integrable f a b) : R :=
  match RiemannInt_exists pr RinvN RinvN_cv with
  | existT a' b' => a'
  end.

Lemma RiemannInt_P5 :
 forall (f:R -> R) (a b:R) (pr1 pr2:Riemann_integrable f a b),
   RiemannInt pr1 = RiemannInt pr2.
intros; unfold RiemannInt in |- *;
 case (RiemannInt_exists pr1 RinvN RinvN_cv);
 case (RiemannInt_exists pr2 RinvN RinvN_cv); intros;
 eapply UL_sequence;
 [ apply u0 | apply RiemannInt_P4 with pr2 RinvN; apply RinvN_cv || assumption ].
Qed.

Lemma maxN :
 forall (a b:R) (del:posreal),
   a < b ->
   sigT (fun n:nat => a + INR n * del < b /\ b <= a + INR (S n) * del).
intros; set (I:= fun n:nat => a + INR n * del < b);
 assert (H0 : exists n : nat, I n).
exists 0%nat; unfold I in |- *; rewrite Rmult_0_l; rewrite Rplus_0_r;
 assumption.
cut (Nbound I).
intro; assert (H2:= Nzorn H0 H1); elim H2; intros; exists x; elim p; intros;
 split.
apply H3.
case (total_order_T (a + INR (S x) * del) b); intro.
elim s; intro.
assert (H5:= H4 (S x) a0); elim (le_Sn_n _ H5).
right; symmetry in |- *; assumption.
left; apply r.
assert (H1 : 0 <= (b - a) / del).
unfold Rdiv in |- *; apply Rmult_le_pos;
 [ apply Rge_le; apply Rge_minus; apply Rle_ge; left; apply H | left; apply Rinv_0_lt_compat; apply (cond_pos del) ].
elim (archimed ((b - a) / del)); intros;
 assert (H4 : (0 <= up ((b - a) / del))%Z).
apply le_IZR; simpl in |- *; left; apply Rle_lt_trans with ((b - a) / del);
 assumption.
assert (H5:= IZN _ H4); elim H5; clear H5; intros N H5;
 unfold Nbound in |- *; exists N; intros; unfold I in H6;
 apply INR_le; rewrite H5 in H2; rewrite <- INR_IZR_INZ in H2;
 left; apply Rle_lt_trans with ((b - a) / del); try assumption;
 apply Rmult_le_reg_l with (pos del);
 [ apply (cond_pos del)
 | unfold Rdiv in |- *; rewrite <- (Rmult_comm (/ del));
    rewrite <- Rmult_assoc; rewrite <- Rinv_r_sym;
    [ rewrite Rmult_1_l; rewrite Rmult_comm; apply Rplus_le_reg_l with a;
       replace (a + (b - a)) with b; [ left; assumption | ring ]
    | assert (H7:= cond_pos del); red in |- *; intro; rewrite H8 in H7;
       elim (Rlt_irrefl _ H7) ] ].
Qed.

Fixpoint SubEquiN (N:nat) (x y:R) (del:posreal) {struct N} : Rlist :=
  match N with
  | O => cons y nil
  | S p => cons x (SubEquiN p (x + del) y del)
  end.

Definition max_N (a b:R) (del:posreal) (h:a < b) : nat :=
  match maxN del h with
  | existT N H0 => N
  end.

Definition SubEqui (a b:R) (del:posreal) (h:a < b) : Rlist :=
  SubEquiN (S (max_N del h)) a b del.

Lemma Heine_cor1 :
 forall (f:R -> R) (a b:R),
   a < b ->
   (forall x:R, a <= x <= b -> continuity_pt f x) ->
   forall eps:posreal,
     sigT
       (fun delta:posreal =>
          delta <= b - a /\
          (forall x y:R,
             a <= x <= b ->
             a <= y <= b -> Rabs (x - y) < delta -> Rabs (f x - f y) < eps)).
intro f; intros;
 set
  (E:=
   fun l:R =>
     0 < l <= b - a /\
     (forall x y:R,
        a <= x <= b ->
        a <= y <= b -> Rabs (x - y) < l -> Rabs (f x - f y) < eps));
 assert (H1 : bound E).
unfold bound in |- *; exists (b - a); unfold is_upper_bound in |- *; intros;
 unfold E in H1; elim H1; clear H1; intros H1 _; elim H1;
 intros; assumption.
assert (H2 : exists x : R, E x).
assert (H2:= Heine f (fun x:R => a <= x <= b) (compact_P3 a b) H0 eps);
 elim H2; intros; exists (Rmin x (b - a)); unfold E in |- *;
 split;
 [ split;
    [ unfold Rmin in |- *; case (Rle_dec x (b - a)); intro;
       [ apply (cond_pos x) | apply Rlt_Rminus; assumption ]
    | apply Rmin_r ]
 | intros; apply H3; try assumption; apply Rlt_le_trans with (Rmin x (b - a));
    [ assumption | apply Rmin_l ] ].
assert (H3:= completeness E H1 H2); elim H3; intros; cut (0 < x <= b - a).
intro; elim H4; clear H4; intros; apply existT with (mkposreal _ H4); split.
apply H5.
unfold is_lub in p; elim p; intros; unfold is_upper_bound in H6;
 set (D:= Rabs (x0 - y)); elim (classic (exists y : R, D < y /\ E y));
 intro.
elim H11; intros; elim H12; clear H12; intros; unfold E in H13; elim H13;
 intros; apply H15; assumption.
assert (H12:= not_ex_all_not _ (fun y:R => D < y /\ E y) H11);
 assert (H13 : is_upper_bound E D).
unfold is_upper_bound in |- *; intros; assert (H14:= H12 x1);
 elim (not_and_or (D < x1) (E x1) H14); intro.
case (Rle_dec x1 D); intro.
assumption.
elim H15; auto with real.
elim H15; assumption.
assert (H14:= H7 _ H13); elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ H14 H10)).
unfold is_lub in p; unfold is_upper_bound in p; elim p; clear p; intros;
 split.
elim H2; intros; assert (H7:= H4 _ H6); unfold E in H6; elim H6; clear H6;
 intros H6 _; elim H6; intros; apply Rlt_le_trans with x0;
 assumption.
apply H5; intros; unfold E in H6; elim H6; clear H6; intros H6 _; elim H6;
 intros; assumption.
Qed.

Lemma Heine_cor2 :
 forall (f:R -> R) (a b:R),
   (forall x:R, a <= x <= b -> continuity_pt f x) ->
   forall eps:posreal,
     sigT
       (fun delta:posreal =>
          forall x y:R,
            a <= x <= b ->
            a <= y <= b -> Rabs (x - y) < delta -> Rabs (f x - f y) < eps).
intro f; intros; case (total_order_T a b); intro.
elim s; intro.
assert (H0:= Heine_cor1 a0 H eps); elim H0; intros; apply existT with x;
 elim p; intros; apply H2; assumption.
apply existT with (mkposreal _ Rlt_0_1); intros; assert (H3 : x = y);
 [ elim H0; elim H1; intros; rewrite b0 in H3; rewrite b0 in H5; apply Rle_antisym; apply Rle_trans with b; assumption | rewrite H3; unfold Rminus in |- *; rewrite Rplus_opp_r; rewrite Rabs_R0; apply (cond_pos eps) ].
apply existT with (mkposreal _ Rlt_0_1); intros; elim H0; intros;
 elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ (Rle_trans _ _ _ H3 H4) r)).
Qed.

Lemma SubEqui_P1 :
 forall (a b:R) (del:posreal) (h:a < b), pos_Rl (SubEqui del h) 0 = a.
intros; unfold SubEqui in |- *; case (maxN del h); intros; reflexivity.
Qed.

Lemma SubEqui_P2 :
 forall (a b:R) (del:posreal) (h:a < b),
   pos_Rl (SubEqui del h) (pred (Rlength (SubEqui del h))) = b.
intros; unfold SubEqui in |- *; case (maxN del h); intros; clear a0;
 cut
  (forall (x:nat) (a:R) (del:posreal),
     pos_Rl (SubEquiN (S x) a b del)
       (pred (Rlength (SubEquiN (S x) a b del))) = b);
 [ intro; apply H
 | simple induction x0;
    [ intros; reflexivity | intros; change (pos_Rl (SubEquiN (S n) (a0 + del0) b del0) (pred (Rlength (SubEquiN (S n) (a0 + del0) b del0))) = b) in |- *; apply H ] ].
Qed.

Lemma SubEqui_P3 :
 forall (N:nat) (a b:R) (del:posreal), Rlength (SubEquiN N a b del) = S N.
simple induction N; intros;
 [ reflexivity | simpl in |- *; rewrite H; reflexivity ].
Qed.

Lemma SubEqui_P4 :
 forall (N:nat) (a b:R) (del:posreal) (i:nat),
   (i < S N)%nat -> pos_Rl (SubEquiN (S N) a b del) i = a + INR i * del.
simple induction N;
 [ intros; inversion H; [ simpl in |- *; ring | elim (le_Sn_O _ H1) ]
 | intros; induction i as [| i Hreci];
    [ simpl in |- *; ring
    | change
        (pos_Rl (SubEquiN (S n) (a + del) b del) i = a + INR (S i) * del)
       in |- *; rewrite H; [ rewrite S_INR; ring | apply lt_S_n; apply H0 ] ] ].
Qed.

Lemma SubEqui_P5 :
 forall (a b:R) (del:posreal) (h:a < b),
   Rlength (SubEqui del h) = S (S (max_N del h)).
intros; unfold SubEqui in |- *; apply SubEqui_P3.
Qed.

Lemma SubEqui_P6 :
 forall (a b:R) (del:posreal) (h:a < b) (i:nat),
   (i < S (max_N del h))%nat -> pos_Rl (SubEqui del h) i = a + INR i * del.
intros; unfold SubEqui in |- *; apply SubEqui_P4; assumption.
Qed.

Lemma SubEqui_P7 :
 forall (a b:R) (del:posreal) (h:a < b), ordered_Rlist (SubEqui del h).
intros; unfold ordered_Rlist in |- *; intros; rewrite SubEqui_P5 in H;
 simpl in H; inversion H.
rewrite (SubEqui_P6 del h (i:=(max_N del h))).
replace (S (max_N del h)) with (pred (Rlength (SubEqui del h))).
rewrite SubEqui_P2; unfold max_N in |- *; case (maxN del h); intros; left;
 elim a0; intros; assumption.
rewrite SubEqui_P5; reflexivity.
apply lt_n_Sn.
repeat rewrite SubEqui_P6.
3: assumption.
2: apply le_lt_n_Sm; assumption.
apply Rplus_le_compat_l; rewrite S_INR; rewrite Rmult_plus_distr_r;
 pattern (INR i * del) at 1 in |- *; rewrite <- Rplus_0_r;
 apply Rplus_le_compat_l; rewrite Rmult_1_l; left;
 apply (cond_pos del).
Qed.

Lemma SubEqui_P8 :
 forall (a b:R) (del:posreal) (h:a < b) (i:nat),
   (i < Rlength (SubEqui del h))%nat -> a <= pos_Rl (SubEqui del h) i <= b.
intros; split.
pattern a at 1 in |- *; rewrite <- (SubEqui_P1 del h); apply RList_P5.
apply SubEqui_P7.
elim (RList_P3 (SubEqui del h) (pos_Rl (SubEqui del h) i)); intros; apply H1;
 exists i; split; [ reflexivity | assumption ].
pattern b at 2 in |- *; rewrite <- (SubEqui_P2 del h); apply RList_P7;
 [ apply SubEqui_P7
 | elim (RList_P3 (SubEqui del h) (pos_Rl (SubEqui del h) i)); intros;
    apply H1; exists i; split; [ reflexivity | assumption ] ].
Qed.

Lemma SubEqui_P9 :
 forall (a b:R) (del:posreal) (f:R -> R) (h:a < b),
   sigT
     (fun g:StepFun a b =>
        g b = f b /\
        (forall i:nat,
           (i < pred (Rlength (SubEqui del h)))%nat ->
           constant_D_eq g
             (co_interval (pos_Rl (SubEqui del h) i)
                (pos_Rl (SubEqui del h) (S i)))
             (f (pos_Rl (SubEqui del h) i)))).
intros; apply StepFun_P38;
 [ apply SubEqui_P7 | apply SubEqui_P1 | apply SubEqui_P2 ].
Qed.

Lemma RiemannInt_P6 :
 forall (f:R -> R) (a b:R),
   a < b ->
   (forall x:R, a <= x <= b -> continuity_pt f x) -> Riemann_integrable f a b.
intros; unfold Riemann_integrable in |- *; intro;
 assert (H1 : 0 < eps / (2 * (b - a))).
unfold Rdiv in |- *; apply Rmult_lt_0_compat;
 [ apply (cond_pos eps)
 | apply Rinv_0_lt_compat; apply Rmult_lt_0_compat;
    [ prove_sup0 | apply Rlt_Rminus; assumption ] ].
assert (H2 : Rmin a b = a).
unfold Rmin in |- *; case (Rle_dec a b); intro;
 [ reflexivity | elim n; left; assumption ].
assert (H3 : Rmax a b = b).
unfold Rmax in |- *; case (Rle_dec a b); intro;
 [ reflexivity | elim n; left; assumption ].
elim (Heine_cor2 H0 (mkposreal _ H1)); intros del H4;
 elim (SubEqui_P9 del f H); intros phi [H5 H6]; split with phi;
 split with (mkStepFun (StepFun_P4 a b (eps / (2 * (b - a)))));
 split.
2: rewrite StepFun_P18; unfold Rdiv in |- *; rewrite Rinv_mult_distr.
2: do 2 rewrite Rmult_assoc; rewrite <- Rinv_l_sym.
2: rewrite Rmult_1_r; rewrite Rabs_right.
2: apply Rmult_lt_reg_l with 2.
2: prove_sup0.
2: rewrite <- (Rmult_comm (/ 2)); rewrite <- Rmult_assoc;
    rewrite <- Rinv_r_sym.
2: rewrite Rmult_1_l; pattern (pos eps) at 1 in |- *; rewrite <- Rplus_0_r;
    rewrite double; apply Rplus_lt_compat_l; apply (cond_pos eps).
2: discrR.
2: apply Rle_ge; left; apply Rmult_lt_0_compat.
2: apply (cond_pos eps).
2: apply Rinv_0_lt_compat; prove_sup0.
2: apply Rminus_eq_contra; red in |- *; intro; clear H6; rewrite H7 in H;
    elim (Rlt_irrefl _ H).
2: discrR.
2: apply Rminus_eq_contra; red in |- *; intro; clear H6; rewrite H7 in H;
    elim (Rlt_irrefl _ H).
intros; rewrite H2 in H7; rewrite H3 in H7; simpl in |- *;
 unfold fct_cte in |- *;
 cut
  (forall t:R,
     a <= t <= b ->
     t = b \/
     (exists i : nat,
        (i < pred (Rlength (SubEqui del H)))%nat /\
        co_interval (pos_Rl (SubEqui del H) i) (pos_Rl (SubEqui del H) (S i))
          t)).
intro; elim (H8 _ H7); intro.
rewrite H9; rewrite H5; unfold Rminus in |- *; rewrite Rplus_opp_r;
 rewrite Rabs_R0; left; assumption.
elim H9; clear H9; intros I [H9 H10]; assert (H11:= H6 I H9 t H10);
 rewrite H11; left; apply H4.
assumption.
apply SubEqui_P8; apply lt_trans with (pred (Rlength (SubEqui del H))).
assumption.
apply lt_pred_n_n; apply neq_O_lt; red in |- *; intro; rewrite <- H12 in H9;
 elim (lt_n_O _ H9).
unfold co_interval in H10; elim H10; clear H10; intros; rewrite Rabs_right.
rewrite SubEqui_P5 in H9; simpl in H9; inversion H9.
apply Rplus_lt_reg_r with (pos_Rl (SubEqui del H) (max_N del H)).
replace
 (pos_Rl (SubEqui del H) (max_N del H) +
  (t - pos_Rl (SubEqui del H) (max_N del H))) with t;
 [ idtac | ring ]; apply Rlt_le_trans with b.
rewrite H14 in H12;
 assert (H13 : S (max_N del H) = pred (Rlength (SubEqui del H))).
rewrite SubEqui_P5; reflexivity.
rewrite H13 in H12; rewrite SubEqui_P2 in H12; apply H12.
rewrite SubEqui_P6.
2: apply lt_n_Sn.
unfold max_N in |- *; case (maxN del H); intros; elim a0; clear a0;
 intros _ H13; replace (a + INR x * del + del) with (a + INR (S x) * del);
 [ assumption | rewrite S_INR; ring ].
apply Rplus_lt_reg_r with (pos_Rl (SubEqui del H) I);
 replace (pos_Rl (SubEqui del H) I + (t - pos_Rl (SubEqui del H) I)) with t;
 [ idtac | ring ];
 replace (pos_Rl (SubEqui del H) I + del) with (pos_Rl (SubEqui del H) (S I)).
assumption.
repeat rewrite SubEqui_P6.
rewrite S_INR; ring.
assumption.
apply le_lt_n_Sm; assumption.
apply Rge_minus; apply Rle_ge; assumption.
intros; clear H0 H1 H4 phi H5 H6 t H7; case (Req_dec t0 b); intro.
left; assumption.
right; set (I:= fun j:nat => a + INR j * del <= t0);
 assert (H1 : exists n : nat, I n).
exists 0%nat; unfold I in |- *; rewrite Rmult_0_l; rewrite Rplus_0_r; elim H8;
 intros; assumption.
assert (H4 : Nbound I).
unfold Nbound in |- *; exists (S (max_N del H)); intros; unfold max_N in |- *;
 case (maxN del H); intros; elim a0; clear a0; intros _ H5;
 apply INR_le; apply Rmult_le_reg_l with (pos del).
apply (cond_pos del).
apply Rplus_le_reg_l with a; do 2 rewrite (Rmult_comm del);
 apply Rle_trans with t0; unfold I in H4; try assumption;
 apply Rle_trans with b; try assumption; elim H8; intros;
 assumption.
elim (Nzorn H1 H4); intros N [H5 H6]; assert (H7 : (N < S (max_N del H))%nat).
unfold max_N in |- *; case (maxN del H); intros; apply INR_lt;
 apply Rmult_lt_reg_l with (pos del).
apply (cond_pos del).
apply Rplus_lt_reg_r with a; do 2 rewrite (Rmult_comm del);
 apply Rle_lt_trans with t0; unfold I in H5; try assumption;
 elim a0; intros; apply Rlt_le_trans with b; try assumption;
 elim H8; intros.
elim H11; intro.
assumption.
elim H0; assumption.
exists N; split.
rewrite SubEqui_P5; simpl in |- *; assumption.
unfold co_interval in |- *; split.
rewrite SubEqui_P6.
apply H5.
assumption.
inversion H7.
replace (S (max_N del H)) with (pred (Rlength (SubEqui del H))).
rewrite (SubEqui_P2 del H); elim H8; intros.
elim H11; intro.
assumption.
elim H0; assumption.
rewrite SubEqui_P5; reflexivity.
rewrite SubEqui_P6.
case (Rle_dec (a + INR (S N) * del) t0); intro.
assert (H11:= H6 (S N) r); elim (le_Sn_n _ H11).
auto with real.
apply le_lt_n_Sm; assumption.
Qed.

Lemma RiemannInt_P7 : forall (f:R -> R) (a:R), Riemann_integrable f a a.
unfold Riemann_integrable in |- *; intro f; intros;
 split with (mkStepFun (StepFun_P4 a a (f a)));
 split with (mkStepFun (StepFun_P4 a a 0)); split.
intros; simpl in |- *; unfold fct_cte in |- *; replace t with a.
unfold Rminus in |- *; rewrite Rplus_opp_r; rewrite Rabs_R0; right;
 reflexivity.
generalize H; unfold Rmin, Rmax in |- *; case (Rle_dec a a); intros; elim H0;
 intros; apply Rle_antisym; assumption.
rewrite StepFun_P18; rewrite Rmult_0_l; rewrite Rabs_R0; apply (cond_pos eps).
Qed.

Lemma continuity_implies_RiemannInt :
 forall (f:R -> R) (a b:R),
   a <= b ->
   (forall x:R, a <= x <= b -> continuity_pt f x) -> Riemann_integrable f a b.
intros; case (total_order_T a b); intro;
 [ elim s; intro;
    [ apply RiemannInt_P6; assumption | rewrite b0; apply RiemannInt_P7 ]
 | elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ H r)) ].
Qed.

Lemma RiemannInt_P8 :
 forall (f:R -> R) (a b:R) (pr1:Riemann_integrable f a b)
   (pr2:Riemann_integrable f b a), RiemannInt pr1 = - RiemannInt pr2.
intro f; intros; eapply UL_sequence.
unfold RiemannInt in |- *; case (RiemannInt_exists pr1 RinvN RinvN_cv);
 intros; apply u.
unfold RiemannInt in |- *; case (RiemannInt_exists pr2 RinvN RinvN_cv);
 intros;
 cut
  (exists psi1 : nat -> StepFun a b,
     (forall n:nat,
        (forall t:R,
           Rmin a b <= t /\ t <= Rmax a b ->
           Rabs (f t - phi_sequence RinvN pr1 n t) <= psi1 n t) /\
        Rabs (RiemannInt_SF (psi1 n)) < RinvN n)).
cut
 (exists psi2 : nat -> StepFun b a,
    (forall n:nat,
       (forall t:R,
          Rmin a b <= t /\ t <= Rmax a b ->
          Rabs (f t - phi_sequence RinvN pr2 n t) <= psi2 n t) /\
       Rabs (RiemannInt_SF (psi2 n)) < RinvN n)).
intros; elim H; clear H; intros psi2 H; elim H0; clear H0; intros psi1 H0;
 assert (H1:= RinvN_cv); unfold Un_cv in |- *; intros;
 assert (H3 : 0 < eps / 3).
unfold Rdiv in |- *; apply Rmult_lt_0_compat;
 [ assumption | apply Rinv_0_lt_compat; prove_sup0 ].
unfold Un_cv in H1; elim (H1 _ H3); clear H1; intros N0 H1;
 unfold R_dist in H1; simpl in H1;
 assert (H4 : forall n:nat, (n >= N0)%nat -> RinvN n < eps / 3).
intros; assert (H5:= H1 _ H4);
 replace (pos (RinvN n)) with (Rabs (/ (INR n + 1) - 0));
 [ assumption | unfold Rminus in |- *; rewrite Ropp_0; rewrite Rplus_0_r; apply Rabs_right; left; apply (cond_pos (RinvN n)) ].
clear H1; unfold Un_cv in u; elim (u _ H3); clear u; intros N1 H1;
 exists (max N0 N1); intros; unfold R_dist in |- *;
 apply Rle_lt_trans with
  (Rabs
     (RiemannInt_SF (phi_sequence RinvN pr1 n) +
      RiemannInt_SF (phi_sequence RinvN pr2 n)) +
   Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n) - x)).
rewrite <- (Rabs_Ropp (RiemannInt_SF (phi_sequence RinvN pr2 n) - x));
 replace (RiemannInt_SF (phi_sequence RinvN pr1 n) - - x) with
  (RiemannInt_SF (phi_sequence RinvN pr1 n) +
   RiemannInt_SF (phi_sequence RinvN pr2 n) +
   - (RiemannInt_SF (phi_sequence RinvN pr2 n) - x));
 [ apply Rabs_triang | ring ].
replace eps with (2 * (eps / 3) + eps / 3).
apply Rplus_lt_compat.
rewrite (StepFun_P39 (phi_sequence RinvN pr2 n));
 replace
  (RiemannInt_SF (phi_sequence RinvN pr1 n) +
   - RiemannInt_SF (mkStepFun (StepFun_P6 (pre (phi_sequence RinvN pr2 n)))))
  with
  (RiemannInt_SF (phi_sequence RinvN pr1 n) +
   -1 *
   RiemannInt_SF (mkStepFun (StepFun_P6 (pre (phi_sequence RinvN pr2 n)))));
 [ idtac | ring ]; rewrite <- StepFun_P30.
case (Rle_dec a b); intro.
apply Rle_lt_trans with
 (RiemannInt_SF
    (mkStepFun
       (StepFun_P32
          (mkStepFun
             (StepFun_P28 (-1) (phi_sequence RinvN pr1 n)
                (mkStepFun (StepFun_P6 (pre (phi_sequence RinvN pr2 n))))))))).
apply StepFun_P34; assumption.
apply Rle_lt_trans with
 (RiemannInt_SF
    (mkStepFun
       (StepFun_P28 1 (psi1 n) (mkStepFun (StepFun_P6 (pre (psi2 n))))))).
apply StepFun_P37; try assumption.
intros; simpl in |- *; rewrite Rmult_1_l;
 apply Rle_trans with
  (Rabs (phi_sequence RinvN pr1 n x0 - f x0) +
   Rabs (f x0 - phi_sequence RinvN pr2 n x0)).
replace (phi_sequence RinvN pr1 n x0 + -1 * phi_sequence RinvN pr2 n x0) with
 (phi_sequence RinvN pr1 n x0 - f x0 + (f x0 - phi_sequence RinvN pr2 n x0));
 [ apply Rabs_triang | ring ].
assert (H7 : Rmin a b = a).
unfold Rmin in |- *; case (Rle_dec a b); intro;
 [ reflexivity | elim n0; assumption ].
assert (H8 : Rmax a b = b).
unfold Rmax in |- *; case (Rle_dec a b); intro;
 [ reflexivity | elim n0; assumption ].
apply Rplus_le_compat.
elim (H0 n); intros; rewrite <- Rabs_Ropp; rewrite Ropp_minus_distr; apply H9;
 rewrite H7; rewrite H8.
elim H6; intros; split; left; assumption.
elim (H n); intros; apply H9; rewrite H7; rewrite H8.
elim H6; intros; split; left; assumption.
rewrite StepFun_P30; rewrite Rmult_1_l; rewrite double; apply Rplus_lt_compat.
elim (H0 n); intros; apply Rle_lt_trans with (Rabs (RiemannInt_SF (psi1 n)));
 [ apply RRle_abs
 | apply Rlt_trans with (pos (RinvN n));
    [ assumption
    | apply H4; unfold ge in |- *; apply le_trans with (max N0 N1);
       [ apply le_max_l | assumption ] ] ].
elim (H n); intros;
 rewrite <-
  (Ropp_involutive (RiemannInt_SF (mkStepFun (StepFun_P6 (pre (psi2 n))))))
  ; rewrite <- StepFun_P39;
 apply Rle_lt_trans with (Rabs (RiemannInt_SF (psi2 n)));
 [ rewrite <- Rabs_Ropp; apply RRle_abs
 | apply Rlt_trans with (pos (RinvN n));
    [ assumption
    | apply H4; unfold ge in |- *; apply le_trans with (max N0 N1);
       [ apply le_max_l | assumption ] ] ].
assert (Hyp : b <= a).
auto with real.
rewrite StepFun_P39; rewrite Rabs_Ropp;
 apply Rle_lt_trans with
  (RiemannInt_SF
     (mkStepFun
        (StepFun_P32
           (mkStepFun
              (StepFun_P6
                 (StepFun_P28 (-1) (phi_sequence RinvN pr1 n)
                    (mkStepFun (StepFun_P6 (pre (phi_sequence RinvN pr2 n)))))))))).
apply StepFun_P34; assumption.
apply Rle_lt_trans with
 (RiemannInt_SF
    (mkStepFun
       (StepFun_P28 1 (mkStepFun (StepFun_P6 (pre (psi1 n)))) (psi2 n)))).
apply StepFun_P37; try assumption.
intros; simpl in |- *; rewrite Rmult_1_l;
 apply Rle_trans with
  (Rabs (phi_sequence RinvN pr1 n x0 - f x0) +
   Rabs (f x0 - phi_sequence RinvN pr2 n x0)).
replace (phi_sequence RinvN pr1 n x0 + -1 * phi_sequence RinvN pr2 n x0) with
 (phi_sequence RinvN pr1 n x0 - f x0 + (f x0 - phi_sequence RinvN pr2 n x0));
 [ apply Rabs_triang | ring ].
assert (H7 : Rmin a b = b).
unfold Rmin in |- *; case (Rle_dec a b); intro;
 [ elim n0; assumption | reflexivity ].
assert (H8 : Rmax a b = a).
unfold Rmax in |- *; case (Rle_dec a b); intro;
 [ elim n0; assumption | reflexivity ].
apply Rplus_le_compat.
elim (H0 n); intros; rewrite <- Rabs_Ropp; rewrite Ropp_minus_distr; apply H9;
 rewrite H7; rewrite H8.
elim H6; intros; split; left; assumption.
elim (H n); intros; apply H9; rewrite H7; rewrite H8; elim H6; intros; split;
 left; assumption.
rewrite StepFun_P30; rewrite Rmult_1_l; rewrite double; apply Rplus_lt_compat.
elim (H0 n); intros;
 rewrite <-
  (Ropp_involutive (RiemannInt_SF (mkStepFun (StepFun_P6 (pre (psi1 n))))))
  ; rewrite <- StepFun_P39;
 apply Rle_lt_trans with (Rabs (RiemannInt_SF (psi1 n)));
 [ rewrite <- Rabs_Ropp; apply RRle_abs
 | apply Rlt_trans with (pos (RinvN n));
    [ assumption
    | apply H4; unfold ge in |- *; apply le_trans with (max N0 N1);
       [ apply le_max_l | assumption ] ] ].
elim (H n); intros; apply Rle_lt_trans with (Rabs (RiemannInt_SF (psi2 n)));
 [ apply RRle_abs
 | apply Rlt_trans with (pos (RinvN n));
    [ assumption
    | apply H4; unfold ge in |- *; apply le_trans with (max N0 N1);
       [ apply le_max_l | assumption ] ] ].
unfold R_dist in H1; apply H1; unfold ge in |- *;
 apply le_trans with (max N0 N1); [ apply le_max_r | assumption ].
apply Rmult_eq_reg_l with 3;
 [ unfold Rdiv in |- *; rewrite Rmult_plus_distr_l;
    do 2 rewrite (Rmult_comm 3); repeat rewrite Rmult_assoc;
    rewrite <- Rinv_l_sym; [ ring | discrR ]
 | discrR ].
split with (fun n:nat => projT1 (phi_sequence_prop RinvN pr2 n)); intro;
 rewrite Rmin_comm; rewrite RmaxSym;
 apply (projT2 (phi_sequence_prop RinvN pr2 n)).
split with (fun n:nat => projT1 (phi_sequence_prop RinvN pr1 n)); intro;
 apply (projT2 (phi_sequence_prop RinvN pr1 n)).
Qed.

Lemma RiemannInt_P9 :
 forall (f:R -> R) (a:R) (pr:Riemann_integrable f a a), RiemannInt pr = 0.
intros; assert (H:= RiemannInt_P8 pr pr); apply Rmult_eq_reg_l with 2;
 [ rewrite Rmult_0_r; rewrite double; pattern (RiemannInt pr) at 2 in |- *; rewrite H; apply Rplus_opp_r | discrR ].
Qed.

Lemma Req_EM_T : forall r1 r2:R, {r1 = r2} + {r1 <> r2}.
intros; elim (total_order_T r1 r2); intros;
 [ elim a; intro;
    [ right; red in |- *; intro; rewrite H in a0; elim (Rlt_irrefl r2 a0) | left; assumption ]
 | right; red in |- *; intro; rewrite H in b; elim (Rlt_irrefl r2 b) ].
Qed.

Lemma RiemannInt_P10 :
 forall (f g:R -> R) (a b l:R),
   Riemann_integrable f a b ->
   Riemann_integrable g a b ->
   Riemann_integrable (fun x:R => f x + l * g x) a b.
unfold Riemann_integrable in |- *; intros f g; intros; case (Req_EM_T l 0);
 intro.
elim (X eps); intros; split with x; elim p; intros; split with x0; elim p0;
 intros; split; try assumption; rewrite e; intros;
 rewrite Rmult_0_l; rewrite Rplus_0_r; apply H; assumption.
assert (H : 0 < eps / 2).
unfold Rdiv in |- *; apply Rmult_lt_0_compat;
 [ apply (cond_pos eps) | apply Rinv_0_lt_compat; prove_sup0 ].
assert (H0 : 0 < eps / (2 * Rabs l)).
unfold Rdiv in |- *; apply Rmult_lt_0_compat;
 [ apply (cond_pos eps)
 | apply Rinv_0_lt_compat; apply Rmult_lt_0_compat;
    [ prove_sup0 | apply Rabs_pos_lt; assumption ] ].
elim (X (mkposreal _ H)); intros; elim (X0 (mkposreal _ H0)); intros;
 split with (mkStepFun (StepFun_P28 l x x0)); elim p0;
 elim p; intros; split with (mkStepFun (StepFun_P28 (Rabs l) x1 x2));
 elim p1; elim p2; clear p1 p2 p0 p X X0; intros; split.
intros; simpl in |- *;
 apply Rle_trans with (Rabs (f t - x t) + Rabs (l * (g t - x0 t))).
replace (f t + l * g t - (x t + l * x0 t)) with
 (f t - x t + l * (g t - x0 t)); [ apply Rabs_triang | ring ].
apply Rplus_le_compat;
 [ apply H3; assumption
 | rewrite Rabs_mult; apply Rmult_le_compat_l;
    [ apply Rabs_pos | apply H1; assumption ] ].
rewrite StepFun_P30;
 apply Rle_lt_trans with
  (Rabs (RiemannInt_SF x1) + Rabs (Rabs l * RiemannInt_SF x2)).
apply Rabs_triang.
rewrite (double_var eps); apply Rplus_lt_compat.
apply H4.
rewrite Rabs_mult; rewrite Rabs_Rabsolu; apply Rmult_lt_reg_l with (/ Rabs l).
apply Rinv_0_lt_compat; apply Rabs_pos_lt; assumption.
rewrite <- Rmult_assoc; rewrite <- Rinv_l_sym;
 [ rewrite Rmult_1_l;
    replace (/ Rabs l * (eps / 2)) with (eps / (2 * Rabs l));
    [ apply H2
    | unfold Rdiv in |- *; rewrite Rinv_mult_distr;
       [ ring | discrR | apply Rabs_no_R0; assumption ] ]
 | apply Rabs_no_R0; assumption ].
Qed.

Lemma RiemannInt_P11 :
 forall (f:R -> R) (a b l:R) (un:nat -> posreal)
   (phi1 phi2 psi1 psi2:nat -> StepFun a b),
   Un_cv un 0 ->
   (forall n:nat,
      (forall t:R,
         Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n t) <= psi1 n t) /\
      Rabs (RiemannInt_SF (psi1 n)) < un n) ->
   (forall n:nat,
      (forall t:R,
         Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n t) <= psi2 n t) /\
      Rabs (RiemannInt_SF (psi2 n)) < un n) ->
   Un_cv (fun N:nat => RiemannInt_SF (phi1 N)) l ->
   Un_cv (fun N:nat => RiemannInt_SF (phi2 N)) l.
unfold Un_cv in |- *; intro f; intros; intros.
case (Rle_dec a b); intro Hyp.
assert (H4 : 0 < eps / 3).
unfold Rdiv in |- *; apply Rmult_lt_0_compat;
 [ assumption | apply Rinv_0_lt_compat; prove_sup0 ].
elim (H _ H4); clear H; intros N0 H.
elim (H2 _ H4); clear H2; intros N1 H2.
set (N:= max N0 N1); exists N; intros; unfold R_dist in |- *.
apply Rle_lt_trans with
 (Rabs (RiemannInt_SF (phi2 n) - RiemannInt_SF (phi1 n)) +
  Rabs (RiemannInt_SF (phi1 n) - l)).
replace (RiemannInt_SF (phi2 n) - l) with
 (RiemannInt_SF (phi2 n) - RiemannInt_SF (phi1 n) +
  (RiemannInt_SF (phi1 n) - l)); [ apply Rabs_triang | ring ].
replace eps with (2 * (eps / 3) + eps / 3).
apply Rplus_lt_compat.
replace (RiemannInt_SF (phi2 n) - RiemannInt_SF (phi1 n)) with
 (RiemannInt_SF (phi2 n) + -1 * RiemannInt_SF (phi1 n));
 [ idtac | ring ].
rewrite <- StepFun_P30.
apply Rle_lt_trans with
 (RiemannInt_SF
    (mkStepFun (StepFun_P32 (mkStepFun (StepFun_P28 (-1) (phi2 n) (phi1 n)))))).
apply StepFun_P34; assumption.
apply Rle_lt_trans with
 (RiemannInt_SF (mkStepFun (StepFun_P28 1 (psi1 n) (psi2 n)))).
apply StepFun_P37; try assumption; intros; simpl in |- *; rewrite Rmult_1_l.
apply Rle_trans with (Rabs (phi2 n x - f x) + Rabs (f x - phi1 n x)).
replace (phi2 n x + -1 * phi1 n x) with (phi2 n x - f x + (f x - phi1 n x));
 [ apply Rabs_triang | ring ].
rewrite (Rplus_comm (psi1 n x)); apply Rplus_le_compat.
rewrite <- Rabs_Ropp; rewrite Ropp_minus_distr; elim (H1 n); intros; apply H7.
assert (H10 : Rmin a b = a).
unfold Rmin in |- *; case (Rle_dec a b); intro;
 [ reflexivity | elim n0; assumption ].
assert (H11 : Rmax a b = b).
unfold Rmax in |- *; case (Rle_dec a b); intro;
 [ reflexivity | elim n0; assumption ].
rewrite H10; rewrite H11; elim H6; intros; split; left; assumption.
elim (H0 n); intros; apply H7; assert (H10 : Rmin a b = a).
unfold Rmin in |- *; case (Rle_dec a b); intro;
 [ reflexivity | elim n0; assumption ].
assert (H11 : Rmax a b = b).
unfold Rmax in |- *; case (Rle_dec a b); intro;
 [ reflexivity | elim n0; assumption ].
rewrite H10; rewrite H11; elim H6; intros; split; left; assumption.
rewrite StepFun_P30; rewrite Rmult_1_l; rewrite double; apply Rplus_lt_compat.
apply Rlt_trans with (pos (un n)).
elim (H0 n); intros; apply Rle_lt_trans with (Rabs (RiemannInt_SF (psi1 n))).
apply RRle_abs.
assumption.
replace (pos (un n)) with (R_dist (un n) 0).
apply H; unfold ge in |- *; apply le_trans with N; try assumption.
unfold N in |- *; apply le_max_l.
unfold R_dist in |- *; unfold Rminus in |- *; rewrite Ropp_0;
 rewrite Rplus_0_r; apply Rabs_right.
apply Rle_ge; left; apply (cond_pos (un n)).
apply Rlt_trans with (pos (un n)).
elim (H1 n); intros; apply Rle_lt_trans with (Rabs (RiemannInt_SF (psi2 n))).
apply RRle_abs; assumption.
assumption.
replace (pos (un n)) with (R_dist (un n) 0).
apply H; unfold ge in |- *; apply le_trans with N; try assumption;
 unfold N in |- *; apply le_max_l.
unfold R_dist in |- *; unfold Rminus in |- *; rewrite Ropp_0;
 rewrite Rplus_0_r; apply Rabs_right; apply Rle_ge;
 left; apply (cond_pos (un n)).
unfold R_dist in H2; apply H2; unfold ge in |- *; apply le_trans with N;
 try assumption; unfold N in |- *; apply le_max_r.
apply Rmult_eq_reg_l with 3;
 [ unfold Rdiv in |- *; rewrite Rmult_plus_distr_l;
    do 2 rewrite (Rmult_comm 3); repeat rewrite Rmult_assoc;
    rewrite <- Rinv_l_sym; [ ring | discrR ]
 | discrR ].
assert (H4 : 0 < eps / 3).
unfold Rdiv in |- *; apply Rmult_lt_0_compat;
 [ assumption | apply Rinv_0_lt_compat; prove_sup0 ].
elim (H _ H4); clear H; intros N0 H.
elim (H2 _ H4); clear H2; intros N1 H2.
set (N:= max N0 N1); exists N; intros; unfold R_dist in |- *.
apply Rle_lt_trans with
 (Rabs (RiemannInt_SF (phi2 n) - RiemannInt_SF (phi1 n)) +
  Rabs (RiemannInt_SF (phi1 n) - l)).
replace (RiemannInt_SF (phi2 n) - l) with
 (RiemannInt_SF (phi2 n) - RiemannInt_SF (phi1 n) +
  (RiemannInt_SF (phi1 n) - l)); [ apply Rabs_triang | ring ].
assert (Hyp_b : b <= a).
auto with real.
replace eps with (2 * (eps / 3) + eps / 3).
apply Rplus_lt_compat.
replace (RiemannInt_SF (phi2 n) - RiemannInt_SF (phi1 n)) with
 (RiemannInt_SF (phi2 n) + -1 * RiemannInt_SF (phi1 n));
 [ idtac | ring ].
rewrite <- StepFun_P30.
rewrite StepFun_P39.
rewrite Rabs_Ropp.
apply Rle_lt_trans with
 (RiemannInt_SF
    (mkStepFun
       (StepFun_P32
          (mkStepFun
             (StepFun_P6
                (pre (mkStepFun (StepFun_P28 (-1) (phi2 n) (phi1 n))))))))).
apply StepFun_P34; try assumption.
apply Rle_lt_trans with
 (RiemannInt_SF
    (mkStepFun
       (StepFun_P6 (pre (mkStepFun (StepFun_P28 1 (psi1 n) (psi2 n))))))).
apply StepFun_P37; try assumption.
intros; simpl in |- *; rewrite Rmult_1_l.
apply Rle_trans with (Rabs (phi2 n x - f x) + Rabs (f x - phi1 n x)).
replace (phi2 n x + -1 * phi1 n x) with (phi2 n x - f x + (f x - phi1 n x));
 [ apply Rabs_triang | ring ].
rewrite (Rplus_comm (psi1 n x)); apply Rplus_le_compat.
rewrite <- Rabs_Ropp; rewrite Ropp_minus_distr; elim (H1 n); intros; apply H7.
assert (H10 : Rmin a b = b).
unfold Rmin in |- *; case (Rle_dec a b); intro;
 [ elim Hyp; assumption | reflexivity ].
assert (H11 : Rmax a b = a).
unfold Rmax in |- *; case (Rle_dec a b); intro;
 [ elim Hyp; assumption | reflexivity ].
rewrite H10; rewrite H11; elim H6; intros; split; left; assumption.
elim (H0 n); intros; apply H7; assert (H10 : Rmin a b = b).
unfold Rmin in |- *; case (Rle_dec a b); intro;
 [ elim Hyp; assumption | reflexivity ].
assert (H11 : Rmax a b = a).
unfold Rmax in |- *; case (Rle_dec a b); intro;
 [ elim Hyp; assumption | reflexivity ].
rewrite H10; rewrite H11; elim H6; intros; split; left; assumption.
rewrite <-
 (Ropp_involutive
    (RiemannInt_SF
       (mkStepFun
          (StepFun_P6 (pre (mkStepFun (StepFun_P28 1 (psi1 n) (psi2 n))))))))
 .
rewrite <- StepFun_P39.
rewrite StepFun_P30.
rewrite Rmult_1_l; rewrite double.
rewrite Ropp_plus_distr; apply Rplus_lt_compat.
apply Rlt_trans with (pos (un n)).
elim (H0 n); intros; apply Rle_lt_trans with (Rabs (RiemannInt_SF (psi1 n))).
rewrite <- Rabs_Ropp; apply RRle_abs.
assumption.
replace (pos (un n)) with (R_dist (un n) 0).
apply H; unfold ge in |- *; apply le_trans with N; try assumption.
unfold N in |- *; apply le_max_l.
unfold R_dist in |- *; unfold Rminus in |- *; rewrite Ropp_0;
 rewrite Rplus_0_r; apply Rabs_right.
apply Rle_ge; left; apply (cond_pos (un n)).
apply Rlt_trans with (pos (un n)).
elim (H1 n); intros; apply Rle_lt_trans with (Rabs (RiemannInt_SF (psi2 n))).
rewrite <- Rabs_Ropp; apply RRle_abs; assumption.
assumption.
replace (pos (un n)) with (R_dist (un n) 0).
apply H; unfold ge in |- *; apply le_trans with N; try assumption;
 unfold N in |- *; apply le_max_l.
unfold R_dist in |- *; unfold Rminus in |- *; rewrite Ropp_0;
 rewrite Rplus_0_r; apply Rabs_right; apply Rle_ge;
 left; apply (cond_pos (un n)).
unfold R_dist in H2; apply H2; unfold ge in |- *; apply le_trans with N;
 try assumption; unfold N in |- *; apply le_max_r.
apply Rmult_eq_reg_l with 3;
 [ unfold Rdiv in |- *; rewrite Rmult_plus_distr_l;
    do 2 rewrite (Rmult_comm 3); repeat rewrite Rmult_assoc;
    rewrite <- Rinv_l_sym; [ ring | discrR ]
 | discrR ].
Qed.

Lemma RiemannInt_P12 :
 forall (f g:R -> R) (a b l:R) (pr1:Riemann_integrable f a b)
   (pr2:Riemann_integrable g a b)
   (pr3:Riemann_integrable (fun x:R => f x + l * g x) a b),
   a <= b -> RiemannInt pr3 = RiemannInt pr1 + l * RiemannInt pr2.
intro f; intros; case (Req_dec l 0); intro.
pattern l at 2 in |- *; rewrite H0; rewrite Rmult_0_l; rewrite Rplus_0_r;
 unfold RiemannInt in |- *; case (RiemannInt_exists pr3 RinvN RinvN_cv);
 case (RiemannInt_exists pr1 RinvN RinvN_cv); intros;
 eapply UL_sequence;
 [ apply u0
 | set (psi1:= fun n:nat => projT1 (phi_sequence_prop RinvN pr1 n));
    set (psi2:= fun n:nat => projT1 (phi_sequence_prop RinvN pr3 n));
    apply RiemannInt_P11 with f RinvN (phi_sequence RinvN pr1) psi1 psi2;
    [ apply RinvN_cv
    | intro; apply (projT2 (phi_sequence_prop RinvN pr1 n))
    | intro;
       assert
        (H1 :
         (forall t:R,
            Rmin a b <= t /\ t <= Rmax a b ->
            Rabs (f t + l * g t - phi_sequence RinvN pr3 n t) <= psi2 n t) /\
         Rabs (RiemannInt_SF (psi2 n)) < RinvN n);
       [ apply (projT2 (phi_sequence_prop RinvN pr3 n))
       | elim H1; intros; split; try assumption; intros;
          replace (f t) with (f t + l * g t);
          [ apply H2; assumption | rewrite H0; ring ] ]
    | assumption ] ].
eapply UL_sequence.
unfold RiemannInt in |- *; case (RiemannInt_exists pr3 RinvN RinvN_cv);
 intros; apply u.
unfold Un_cv in |- *; intros; unfold RiemannInt in |- *;
 case (RiemannInt_exists pr1 RinvN RinvN_cv);
 case (RiemannInt_exists pr2 RinvN RinvN_cv); unfold Un_cv in |- *;
 intros; assert (H2 : 0 < eps / 5).
unfold Rdiv in |- *; apply Rmult_lt_0_compat;
 [ assumption | apply Rinv_0_lt_compat; prove_sup0 ].
elim (u0 _ H2); clear u0; intros N0 H3; assert (H4:= RinvN_cv);
 unfold Un_cv in H4; elim (H4 _ H2); clear H4 H2; intros N1 H4;
 assert (H5 : 0 < eps / (5 * Rabs l)).
unfold Rdiv in |- *; apply Rmult_lt_0_compat;
 [ assumption
 | apply Rinv_0_lt_compat; apply Rmult_lt_0_compat;
    [ prove_sup0 | apply Rabs_pos_lt; assumption ] ].
elim (u _ H5); clear u; intros N2 H6; assert (H7:= RinvN_cv);
 unfold Un_cv in H7; elim (H7 _ H5); clear H7 H5; intros N3 H5;
 unfold R_dist in H3, H4, H5, H6; set (N:= max (max N0 N1) (max N2 N3)).
assert (H7 : forall n:nat, (n >= N1)%nat -> RinvN n < eps / 5).
intros; replace (pos (RinvN n)) with (Rabs (RinvN n - 0));
 [ unfold RinvN in |- *; apply H4; assumption | unfold Rminus in |- *; rewrite Ropp_0; rewrite Rplus_0_r; apply Rabs_right; left; apply (cond_pos (RinvN n)) ].
clear H4; assert (H4:= H7); clear H7;
 assert (H7 : forall n:nat, (n >= N3)%nat -> RinvN n < eps / (5 * Rabs l)).
intros; replace (pos (RinvN n)) with (Rabs (RinvN n - 0));
 [ unfold RinvN in |- *; apply H5; assumption | unfold Rminus in |- *; rewrite Ropp_0; rewrite Rplus_0_r; apply Rabs_right; left; apply (cond_pos (RinvN n)) ].
clear H5; assert (H5:= H7); clear H7; exists N; intros;
 unfold R_dist in |- *.
apply Rle_lt_trans with
 (Rabs
    (RiemannInt_SF (phi_sequence RinvN pr3 n) -
     (RiemannInt_SF (phi_sequence RinvN pr1 n) +
      l * RiemannInt_SF (phi_sequence RinvN pr2 n))) +
  Rabs (RiemannInt_SF (phi_sequence RinvN pr1 n) - x0) +
  Rabs l * Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n) - x)).
apply Rle_trans with
 (Rabs
    (RiemannInt_SF (phi_sequence RinvN pr3 n) -
     (RiemannInt_SF (phi_sequence RinvN pr1 n) +
      l * RiemannInt_SF (phi_sequence RinvN pr2 n))) +
  Rabs
    (RiemannInt_SF (phi_sequence RinvN pr1 n) - x0 +
     l * (RiemannInt_SF (phi_sequence RinvN pr2 n) - x))).
replace (RiemannInt_SF (phi_sequence RinvN pr3 n) - (x0 + l * x)) with
 (RiemannInt_SF (phi_sequence RinvN pr3 n) -
  (RiemannInt_SF (phi_sequence RinvN pr1 n) +
   l * RiemannInt_SF (phi_sequence RinvN pr2 n)) +
  (RiemannInt_SF (phi_sequence RinvN pr1 n) - x0 +
   l * (RiemannInt_SF (phi_sequence RinvN pr2 n) - x)));
 [ apply Rabs_triang | ring ].
rewrite Rplus_assoc; apply Rplus_le_compat_l; rewrite <- Rabs_mult;
 replace
  (RiemannInt_SF (phi_sequence RinvN pr1 n) - x0 +
   l * (RiemannInt_SF (phi_sequence RinvN pr2 n) - x)) with
  (RiemannInt_SF (phi_sequence RinvN pr1 n) - x0 +
   l * (RiemannInt_SF (phi_sequence RinvN pr2 n) - x));
 [ apply Rabs_triang | ring ].
replace eps with (3 * (eps / 5) + eps / 5 + eps / 5).
repeat apply Rplus_lt_compat.
assert
 (H7 :
   exists psi1 : nat -> StepFun a b,
    (forall n:nat,
       (forall t:R,
          Rmin a b <= t /\ t <= Rmax a b ->
          Rabs (f t - phi_sequence RinvN pr1 n t) <= psi1 n t) /\
       Rabs (RiemannInt_SF (psi1 n)) < RinvN n)).
split with (fun n:nat => projT1 (phi_sequence_prop RinvN pr1 n)); intro;
 apply (projT2 (phi_sequence_prop RinvN pr1 n0)).
assert
 (H8 :
   exists psi2 : nat -> StepFun a b,
    (forall n:nat,
       (forall t:R,
          Rmin a b <= t /\ t <= Rmax a b ->
          Rabs (g t - phi_sequence RinvN pr2 n t) <= psi2 n t) /\
       Rabs (RiemannInt_SF (psi2 n)) < RinvN n)).
split with (fun n:nat => projT1 (phi_sequence_prop RinvN pr2 n)); intro;
 apply (projT2 (phi_sequence_prop RinvN pr2 n0)).
assert
 (H9 :
   exists psi3 : nat -> StepFun a b,
    (forall n:nat,
       (forall t:R,
          Rmin a b <= t /\ t <= Rmax a b ->
          Rabs (f t + l * g t - phi_sequence RinvN pr3 n t) <= psi3 n t) /\
       Rabs (RiemannInt_SF (psi3 n)) < RinvN n)).
split with (fun n:nat => projT1 (phi_sequence_prop RinvN pr3 n)); intro;
 apply (projT2 (phi_sequence_prop RinvN pr3 n0)).
elim H7; clear H7; intros psi1 H7; elim H8; clear H8; intros psi2 H8; elim H9;
 clear H9; intros psi3 H9;
 replace
  (RiemannInt_SF (phi_sequence RinvN pr3 n) -
   (RiemannInt_SF (phi_sequence RinvN pr1 n) +
    l * RiemannInt_SF (phi_sequence RinvN pr2 n))) with
  (RiemannInt_SF (phi_sequence RinvN pr3 n) +
   -1 *
   (RiemannInt_SF (phi_sequence RinvN pr1 n) +
    l * RiemannInt_SF (phi_sequence RinvN pr2 n)));
 [ idtac | ring ]; do 2 rewrite <- StepFun_P30; assert (H10 : Rmin a b = a).
unfold Rmin in |- *; case (Rle_dec a b); intro;
 [ reflexivity | elim n0; assumption ].
assert (H11 : Rmax a b = b).
unfold Rmax in |- *; case (Rle_dec a b); intro;
 [ reflexivity | elim n0; assumption ].
rewrite H10 in H7; rewrite H10 in H8; rewrite H10 in H9; rewrite H11 in H7;
 rewrite H11 in H8; rewrite H11 in H9;
 apply Rle_lt_trans with
  (RiemannInt_SF
     (mkStepFun
        (StepFun_P32
           (mkStepFun
              (StepFun_P28 (-1) (phi_sequence RinvN pr3 n)
                 (mkStepFun
                    (StepFun_P28 l (phi_sequence RinvN pr1 n)
                       (phi_sequence RinvN pr2 n)))))))).
apply StepFun_P34; assumption.
apply Rle_lt_trans with
 (RiemannInt_SF
    (mkStepFun
       (StepFun_P28 1 (psi3 n)
          (mkStepFun (StepFun_P28 (Rabs l) (psi1 n) (psi2 n)))))).
apply StepFun_P37; try assumption.
intros; simpl in |- *; rewrite Rmult_1_l.
apply Rle_trans with
 (Rabs (phi_sequence RinvN pr3 n x1 - (f x1 + l * g x1)) +
  Rabs
    (f x1 + l * g x1 +
     -1 * (phi_sequence RinvN pr1 n x1 + l * phi_sequence RinvN pr2 n x1))).
replace
 (phi_sequence RinvN pr3 n x1 +
  -1 * (phi_sequence RinvN pr1 n x1 + l * phi_sequence RinvN pr2 n x1)) with
 (phi_sequence RinvN pr3 n x1 - (f x1 + l * g x1) +
  (f x1 + l * g x1 +
   -1 * (phi_sequence RinvN pr1 n x1 + l * phi_sequence RinvN pr2 n x1)));
 [ apply Rabs_triang | ring ].
rewrite Rplus_assoc; apply Rplus_le_compat.
elim (H9 n); intros; rewrite <- Rabs_Ropp; rewrite Ropp_minus_distr;
 apply H13.
elim H12; intros; split; left; assumption.
apply Rle_trans with
 (Rabs (f x1 - phi_sequence RinvN pr1 n x1) +
  Rabs l * Rabs (g x1 - phi_sequence RinvN pr2 n x1)).
rewrite <- Rabs_mult;
 replace
  (f x1 +
   (l * g x1 +
    -1 * (phi_sequence RinvN pr1 n x1 + l * phi_sequence RinvN pr2 n x1)))
  with
  (f x1 - phi_sequence RinvN pr1 n x1 +
   l * (g x1 - phi_sequence RinvN pr2 n x1)); [ apply Rabs_triang | ring ].
apply Rplus_le_compat.
elim (H7 n); intros; apply H13.
elim H12; intros; split; left; assumption.
apply Rmult_le_compat_l;
 [ apply Rabs_pos | elim (H8 n); intros; apply H13; elim H12; intros; split; left; assumption ].
do 2 rewrite StepFun_P30; rewrite Rmult_1_l;
 replace (3 * (eps / 5)) with (eps / 5 + (eps / 5 + eps / 5));
 [ repeat apply Rplus_lt_compat | ring ].
apply Rlt_trans with (pos (RinvN n));
 [ apply Rle_lt_trans with (Rabs (RiemannInt_SF (psi3 n)));
    [ apply RRle_abs | elim (H9 n); intros; assumption ]
 | apply H4; unfold ge in |- *; apply le_trans with N;
    [ apply le_trans with (max N0 N1);
       [ apply le_max_r | unfold N in |- *; apply le_max_l ]
    | assumption ] ].
apply Rlt_trans with (pos (RinvN n));
 [ apply Rle_lt_trans with (Rabs (RiemannInt_SF (psi1 n)));
    [ apply RRle_abs | elim (H7 n); intros; assumption ]
 | apply H4; unfold ge in |- *; apply le_trans with N;
    [ apply le_trans with (max N0 N1);
       [ apply le_max_r | unfold N in |- *; apply le_max_l ]
    | assumption ] ].
apply Rmult_lt_reg_l with (/ Rabs l).
apply Rinv_0_lt_compat; apply Rabs_pos_lt; assumption.
rewrite <- Rmult_assoc; rewrite <- Rinv_l_sym.
rewrite Rmult_1_l; replace (/ Rabs l * (eps / 5)) with (eps / (5 * Rabs l)).
apply Rlt_trans with (pos (RinvN n));
 [ apply Rle_lt_trans with (Rabs (RiemannInt_SF (psi2 n)));
    [ apply RRle_abs | elim (H8 n); intros; assumption ]
 | apply H5; unfold ge in |- *; apply le_trans with N;
    [ apply le_trans with (max N2 N3);
       [ apply le_max_r | unfold N in |- *; apply le_max_r ]
    | assumption ] ].
unfold Rdiv in |- *; rewrite Rinv_mult_distr;
 [ ring | discrR | apply Rabs_no_R0; assumption ].
apply Rabs_no_R0; assumption.
apply H3; unfold ge in |- *; apply le_trans with (max N0 N1);
 [ apply le_max_l
 | apply le_trans with N; [ unfold N in |- *; apply le_max_l | assumption ] ].
apply Rmult_lt_reg_l with (/ Rabs l).
apply Rinv_0_lt_compat; apply Rabs_pos_lt; assumption.
rewrite <- Rmult_assoc; rewrite <- Rinv_l_sym.
rewrite Rmult_1_l; replace (/ Rabs l * (eps / 5)) with (eps / (5 * Rabs l)).
apply H6; unfold ge in |- *; apply le_trans with (max N2 N3);
 [ apply le_max_l
 | apply le_trans with N; [ unfold N in |- *; apply le_max_r | assumption ] ].
unfold Rdiv in |- *; rewrite Rinv_mult_distr;
 [ ring | discrR | apply Rabs_no_R0; assumption ].
apply Rabs_no_R0; assumption.
apply Rmult_eq_reg_l with 5;
 [ unfold Rdiv in |- *; do 2 rewrite Rmult_plus_distr_l;
    do 3 rewrite (Rmult_comm 5); repeat rewrite Rmult_assoc;
    rewrite <- Rinv_l_sym; [ ring | discrR ]
 | discrR ].
Qed.

Lemma RiemannInt_P13 :
 forall (f g:R -> R) (a b l:R) (pr1:Riemann_integrable f a b)
   (pr2:Riemann_integrable g a b)
   (pr3:Riemann_integrable (fun x:R => f x + l * g x) a b),
   RiemannInt pr3 = RiemannInt pr1 + l * RiemannInt pr2.
intros; case (Rle_dec a b); intro;
 [ apply RiemannInt_P12; assumption
 | assert (H : b <= a);
    [ auto with real
    | replace (RiemannInt pr3) with (- RiemannInt (RiemannInt_P1 pr3));
       [ idtac | symmetry in |- *; apply RiemannInt_P8 ];
       replace (RiemannInt pr2) with (- RiemannInt (RiemannInt_P1 pr2));
       [ idtac | symmetry in |- *; apply RiemannInt_P8 ];
       replace (RiemannInt pr1) with (- RiemannInt (RiemannInt_P1 pr1));
       [ idtac | symmetry in |- *; apply RiemannInt_P8 ];
       rewrite
        (RiemannInt_P12 (RiemannInt_P1 pr1) (RiemannInt_P1 pr2)
           (RiemannInt_P1 pr3) H); ring ] ].
Qed.

Lemma RiemannInt_P14 : forall a b c:R, Riemann_integrable (fct_cte c) a b.
unfold Riemann_integrable in |- *; intros;
 split with (mkStepFun (StepFun_P4 a b c));
 split with (mkStepFun (StepFun_P4 a b 0)); split;
 [ intros; simpl in |- *; unfold Rminus in |- *; rewrite Rplus_opp_r; rewrite Rabs_R0; unfold fct_cte in |- *; right; reflexivity | rewrite StepFun_P18; rewrite Rmult_0_l; rewrite Rabs_R0; apply (cond_pos eps) ].
Qed.

Lemma RiemannInt_P15 :
 forall (a b c:R) (pr:Riemann_integrable (fct_cte c) a b),
   RiemannInt pr = c * (b - a).
intros; unfold RiemannInt in |- *; case (RiemannInt_exists pr RinvN RinvN_cv);
 intros; eapply UL_sequence.
apply u.
set (phi1:= fun N:nat => phi_sequence RinvN pr N);
 change (Un_cv (fun N:nat => RiemannInt_SF (phi1 N)) (c * (b - a))) in |- *;
 set (f:= fct_cte c);
 assert
  (H1 :
    exists psi1 : nat -> StepFun a b,
     (forall n:nat,
        (forall t:R,
           Rmin a b <= t /\ t <= Rmax a b ->
           Rabs (f t - phi_sequence RinvN pr n t) <= psi1 n t) /\
        Rabs (RiemannInt_SF (psi1 n)) < RinvN n)).
split with (fun n:nat => projT1 (phi_sequence_prop RinvN pr n)); intro;
 apply (projT2 (phi_sequence_prop RinvN pr n)).
elim H1; clear H1; intros psi1 H1;
 set (phi2:= fun n:nat => mkStepFun (StepFun_P4 a b c));
 set (psi2:= fun n:nat => mkStepFun (StepFun_P4 a b 0));
 apply RiemannInt_P11 with f RinvN phi2 psi2 psi1;
 try assumption.
apply RinvN_cv.
intro; split.
intros; unfold f in |- *; simpl in |- *; unfold Rminus in |- *;
 rewrite Rplus_opp_r; rewrite Rabs_R0; unfold fct_cte in |- *;
 right; reflexivity.
unfold psi2 in |- *; rewrite StepFun_P18; rewrite Rmult_0_l; rewrite Rabs_R0;
 apply (cond_pos (RinvN n)).
unfold Un_cv in |- *; intros; split with 0%nat; intros; unfold R_dist in |- *;
 unfold phi2 in |- *; rewrite StepFun_P18; unfold Rminus in |- *;
 rewrite Rplus_opp_r; rewrite Rabs_R0; apply H.
Qed.

Lemma RiemannInt_P16 :
 forall (f:R -> R) (a b:R),
   Riemann_integrable f a b -> Riemann_integrable (fun x:R => Rabs (f x)) a b.
unfold Riemann_integrable in |- *; intro f; intros; elim (X eps); clear X;
 intros phi [psi [H H0]]; split with (mkStepFun (StepFun_P32 phi));
 split with psi; split; try assumption; intros; simpl in |- *;
 apply Rle_trans with (Rabs (f t - phi t));
 [ apply Rabs_triang_inv2 | apply H; assumption ].
Qed.

Lemma Rle_cv_lim :
 forall (Un Vn:nat -> R) (l1 l2:R),
   (forall n:nat, Un n <= Vn n) -> Un_cv Un l1 -> Un_cv Vn l2 -> l1 <= l2.
intros; case (Rle_dec l1 l2); intro.
assumption.
assert (H2 : l2 < l1).
auto with real.
clear n; assert (H3 : 0 < (l1 - l2) / 2).
unfold Rdiv in |- *; apply Rmult_lt_0_compat;
 [ apply Rlt_Rminus; assumption | apply Rinv_0_lt_compat; prove_sup0 ].
elim (H1 _ H3); elim (H0 _ H3); clear H0 H1; unfold R_dist in |- *; intros;
 set (N:= max x x0); cut (Vn N < Un N).
intro; elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ (H N) H4)).
apply Rlt_trans with ((l1 + l2) / 2).
apply Rplus_lt_reg_r with (- l2);
 replace (- l2 + (l1 + l2) / 2) with ((l1 - l2) / 2).
rewrite Rplus_comm; apply Rle_lt_trans with (Rabs (Vn N - l2)).
apply RRle_abs.
apply H1; unfold ge in |- *; unfold N in |- *; apply le_max_r.
apply Rmult_eq_reg_l with 2;
 [ unfold Rdiv in |- *; do 2 rewrite (Rmult_comm 2);
    rewrite (Rmult_plus_distr_r (- l2) ((l1 + l2) * / 2) 2);
    repeat rewrite Rmult_assoc; rewrite <- Rinv_l_sym;
    [ ring | discrR ]
 | discrR ].
apply Ropp_lt_cancel; apply Rplus_lt_reg_r with l1;
 replace (l1 + - ((l1 + l2) / 2)) with ((l1 - l2) / 2).
apply Rle_lt_trans with (Rabs (Un N - l1)).
rewrite <- Rabs_Ropp; rewrite Ropp_minus_distr; apply RRle_abs.
apply H0; unfold ge in |- *; unfold N in |- *; apply le_max_l.
apply Rmult_eq_reg_l with 2;
 [ unfold Rdiv in |- *; do 2 rewrite (Rmult_comm 2);
    rewrite (Rmult_plus_distr_r l1 (- ((l1 + l2) * / 2)) 2);
    rewrite <- Ropp_mult_distr_l_reverse; repeat rewrite Rmult_assoc;
    rewrite <- Rinv_l_sym; [ ring | discrR ]
 | discrR ].
Qed.

Lemma RiemannInt_P17 :
 forall (f:R -> R) (a b:R) (pr1:Riemann_integrable f a b)
   (pr2:Riemann_integrable (fun x:R => Rabs (f x)) a b),
   a <= b -> Rabs (RiemannInt pr1) <= RiemannInt pr2.
intro f; intros; unfold RiemannInt in |- *;
 case (RiemannInt_exists pr1 RinvN RinvN_cv);
 case (RiemannInt_exists pr2 RinvN RinvN_cv); intros;
 set (phi1:= phi_sequence RinvN pr1);
 set (phi2:= fun N:nat => mkStepFun (StepFun_P32 (phi1 N)));
 apply Rle_cv_lim with
  (fun N:nat => Rabs (RiemannInt_SF (phi1 N)))
  (fun N:nat => RiemannInt_SF (phi2 N)).
intro; unfold phi2 in |- *; apply StepFun_P34; assumption.
fold phi1 in u0;
 apply (continuity_seq Rabs (fun N:nat => RiemannInt_SF (phi1 N)) x0);
 try assumption.
apply Rcontinuity_abs.
set (phi3:= phi_sequence RinvN pr2);
 assert
  (H0 :
    exists psi3 : nat -> StepFun a b,
     (forall n:nat,
        (forall t:R,
           Rmin a b <= t /\ t <= Rmax a b ->
           Rabs (Rabs (f t) - phi3 n t) <= psi3 n t) /\
        Rabs (RiemannInt_SF (psi3 n)) < RinvN n)).
split with (fun n:nat => projT1 (phi_sequence_prop RinvN pr2 n)); intro;
 apply (projT2 (phi_sequence_prop RinvN pr2 n)).
assert
 (H1 :
   exists psi2 : nat -> StepFun a b,
    (forall n:nat,
       (forall t:R,
          Rmin a b <= t /\ t <= Rmax a b ->
          Rabs (Rabs (f t) - phi2 n t) <= psi2 n t) /\
       Rabs (RiemannInt_SF (psi2 n)) < RinvN n)).
assert
 (H1 :
   exists psi2 : nat -> StepFun a b,
    (forall n:nat,
       (forall t:R,
          Rmin a b <= t /\ t <= Rmax a b -> Rabs (f t - phi1 n t) <= psi2 n t) /\
       Rabs (RiemannInt_SF (psi2 n)) < RinvN n)).
split with (fun n:nat => projT1 (phi_sequence_prop RinvN pr1 n)); intro;
 apply (projT2 (phi_sequence_prop RinvN pr1 n)).
elim H1; clear H1; intros psi2 H1; split with psi2; intros; elim (H1 n);
 clear H1; intros; split; try assumption.
intros; unfold phi2 in |- *; simpl in |- *;
 apply Rle_trans with (Rabs (f t - phi1 n t)).
apply Rabs_triang_inv2.
apply H1; assumption.
elim H0; clear H0; intros psi3 H0; elim H1; clear H1; intros psi2 H1;
 apply RiemannInt_P11 with (fun x:R => Rabs (f x)) RinvN phi3 psi3 psi2;
 try assumption; apply RinvN_cv.
Qed.

Lemma RiemannInt_P18 :
 forall (f g:R -> R) (a b:R) (pr1:Riemann_integrable f a b)
   (pr2:Riemann_integrable g a b),
   a <= b ->
   (forall x:R, a < x < b -> f x = g x) -> RiemannInt pr1 = RiemannInt pr2.
intro f; intros; unfold RiemannInt in |- *;
 case (RiemannInt_exists pr1 RinvN RinvN_cv);
 case (RiemannInt_exists pr2 RinvN RinvN_cv); intros;
 eapply UL_sequence.
apply u0.
set (phi1:= fun N:nat => phi_sequence RinvN pr1 N);
 change (Un_cv (fun N:nat => RiemannInt_SF (phi1 N)) x) in |- *;
 assert
  (H1 :
    exists psi1 : nat -> StepFun a b,
     (forall n:nat,
        (forall t:R,
           Rmin a b <= t /\ t <= Rmax a b ->
           Rabs (f t - phi1 n t) <= psi1 n t) /\
        Rabs (RiemannInt_SF (psi1 n)) < RinvN n)).
split with (fun n:nat => projT1 (phi_sequence_prop RinvN pr1 n)); intro;
 apply (projT2 (phi_sequence_prop RinvN pr1 n)).
elim H1; clear H1; intros psi1 H1;
 set (phi2:= fun N:nat => phi_sequence RinvN pr2 N).
set
 (phi2_aux:=
  fun (N:nat) (x:R) =>
    match Req_EM_T x a with
    | left _ => f a
    | right _ =>
        match Req_EM_T x b with
        | left _ => f b
        | right _ => phi2 N x
        end
    end).
cut (forall N:nat, IsStepFun (phi2_aux N) a b).
intro; set (phi2_m:= fun N:nat => mkStepFun (X N)).
assert
 (H2 :
   exists psi2 : nat -> StepFun a b,
    (forall n:nat,
       (forall t:R,
          Rmin a b <= t /\ t <= Rmax a b -> Rabs (g t - phi2 n t) <= psi2 n t) /\
       Rabs (RiemannInt_SF (psi2 n)) < RinvN n)).
split with (fun n:nat => projT1 (phi_sequence_prop RinvN pr2 n)); intro;
 apply (projT2 (phi_sequence_prop RinvN pr2 n)).
elim H2; clear H2; intros psi2 H2;
 apply RiemannInt_P11 with f RinvN phi2_m psi2 psi1;
 try assumption.
apply RinvN_cv.
intro; elim (H2 n); intros; split; try assumption.
intros; unfold phi2_m in |- *; simpl in |- *; unfold phi2_aux in |- *;
 case (Req_EM_T t a); case (Req_EM_T t b); intros.
rewrite e0; unfold Rminus in |- *; rewrite Rplus_opp_r; rewrite Rabs_R0;
 apply Rle_trans with (Rabs (g t - phi2 n t)).
apply Rabs_pos.
pattern a at 3 in |- *; rewrite <- e0; apply H3; assumption.
rewrite e; unfold Rminus in |- *; rewrite Rplus_opp_r; rewrite Rabs_R0;
 apply Rle_trans with (Rabs (g t - phi2 n t)).
apply Rabs_pos.
pattern a at 3 in |- *; rewrite <- e; apply H3; assumption.
rewrite e; unfold Rminus in |- *; rewrite Rplus_opp_r; rewrite Rabs_R0;
 apply Rle_trans with (Rabs (g t - phi2 n t)).
apply Rabs_pos.
pattern b at 3 in |- *; rewrite <- e; apply H3; assumption.
replace (f t) with (g t).
apply H3; assumption.
symmetry in |- *; apply H0; elim H5; clear H5; intros.
assert (H7 : Rmin a b = a).
unfold Rmin in |- *; case (Rle_dec a b); intro;
 [ reflexivity | elim n2; assumption ].
assert (H8 : Rmax a b = b).
unfold Rmax in |- *; case (Rle_dec a b); intro;
 [ reflexivity | elim n2; assumption ].
rewrite H7 in H5; rewrite H8 in H6; split.
elim H5; intro; [ assumption | elim n1; symmetry in |- *; assumption ].
elim H6; intro; [ assumption | elim n0; assumption ].
cut (forall N:nat, RiemannInt_SF (phi2_m N) = RiemannInt_SF (phi2 N)).
intro; unfold Un_cv in |- *; intros; elim (u _ H4); intros; exists x1; intros;
 rewrite (H3 n); apply H5; assumption.
intro; apply Rle_antisym.
apply StepFun_P37; try assumption.
intros; unfold phi2_m in |- *; simpl in |- *; unfold phi2_aux in |- *;
 case (Req_EM_T x1 a); case (Req_EM_T x1 b); intros.
elim H3; intros; rewrite e0 in H4; elim (Rlt_irrefl _ H4).
elim H3; intros; rewrite e in H4; elim (Rlt_irrefl _ H4).
elim H3; intros; rewrite e in H5; elim (Rlt_irrefl _ H5).
right; reflexivity.
apply StepFun_P37; try assumption.
intros; unfold phi2_m in |- *; simpl in |- *; unfold phi2_aux in |- *;
 case (Req_EM_T x1 a); case (Req_EM_T x1 b); intros.
elim H3; intros; rewrite e0 in H4; elim (Rlt_irrefl _ H4).
elim H3; intros; rewrite e in H4; elim (Rlt_irrefl _ H4).
elim H3; intros; rewrite e in H5; elim (Rlt_irrefl _ H5).
right; reflexivity.
intro; assert (H2:= pre (phi2 N)); unfold IsStepFun in H2;
 unfold is_subdivision in H2; elim H2; clear H2; intros l [lf H2];
 split with l; split with lf; unfold adapted_couple in H2;
 decompose [and] H2; clear H2; unfold adapted_couple in |- *;
 repeat split; try assumption.
intros; assert (H9:= H8 i H2); unfold constant_D_eq, open_interval in H9;
 unfold constant_D_eq, open_interval in |- *; intros;
 rewrite <- (H9 x1 H7); assert (H10 : a <= pos_Rl l i).
replace a with (Rmin a b).
rewrite <- H5; elim (RList_P6 l); intros; apply H10.
assumption.
apply le_O_n.
apply lt_trans with (pred (Rlength l)); [ assumption | apply lt_pred_n_n ].
apply neq_O_lt; intro; rewrite <- H12 in H6; discriminate.
unfold Rmin in |- *; case (Rle_dec a b); intro;
 [ reflexivity | elim n; assumption ].
assert (H11 : pos_Rl l (S i) <= b).
replace b with (Rmax a b).
rewrite <- H4; elim (RList_P6 l); intros; apply H11.
assumption.
apply lt_le_S; assumption.
apply lt_pred_n_n; apply neq_O_lt; intro; rewrite <- H13 in H6; discriminate.
unfold Rmax in |- *; case (Rle_dec a b); intro;
 [ reflexivity | elim n; assumption ].
elim H7; clear H7; intros; unfold phi2_aux in |- *; case (Req_EM_T x1 a);
 case (Req_EM_T x1 b); intros.
rewrite e in H12; elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ H11 H12)).
rewrite e in H7; elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ H10 H7)).
rewrite e in H12; elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ H11 H12)).
reflexivity.
Qed.

Lemma RiemannInt_P19 :
 forall (f g:R -> R) (a b:R) (pr1:Riemann_integrable f a b)
   (pr2:Riemann_integrable g a b),
   a <= b ->
   (forall x:R, a < x < b -> f x <= g x) -> RiemannInt pr1 <= RiemannInt pr2.
intro f; intros; apply Rplus_le_reg_l with (- RiemannInt pr1);
 rewrite Rplus_opp_l; rewrite Rplus_comm;
 apply Rle_trans with (Rabs (RiemannInt (RiemannInt_P10 (-1) pr2 pr1))).
apply Rabs_pos.
replace (RiemannInt pr2 + - RiemannInt pr1) with
 (RiemannInt (RiemannInt_P16 (RiemannInt_P10 (-1) pr2 pr1))).
apply
 (RiemannInt_P17 (RiemannInt_P10 (-1) pr2 pr1)
    (RiemannInt_P16 (RiemannInt_P10 (-1) pr2 pr1)));
 assumption.
replace (RiemannInt pr2 + - RiemannInt pr1) with
 (RiemannInt (RiemannInt_P10 (-1) pr2 pr1)).
apply RiemannInt_P18; try assumption.
intros; apply Rabs_right.
apply Rle_ge; apply Rplus_le_reg_l with (f x); rewrite Rplus_0_r;
 replace (f x + (g x + -1 * f x)) with (g x); [ apply H0; assumption | ring ].
rewrite (RiemannInt_P12 pr2 pr1 (RiemannInt_P10 (-1) pr2 pr1));
 [ ring | assumption ].
Qed.

Lemma FTC_P1 :
 forall (f:R -> R) (a b:R),
   a <= b ->
   (forall x:R, a <= x <= b -> continuity_pt f x) ->
   forall x:R, a <= x -> x <= b -> Riemann_integrable f a x.
intros; apply continuity_implies_RiemannInt;
 [ assumption | intros; apply H0; elim H3; intros; split; assumption || apply Rle_trans with x; assumption ].
Qed.

Definition primitive (f:R -> R) (a b:R) (h:a <= b)
  (pr:forall x:R, a <= x -> x <= b -> Riemann_integrable f a x)
  (x:R) : R :=
  match Rle_dec a x with
  | left r =>
      match Rle_dec x b with
      | left r0 => RiemannInt (pr x r r0)
      | right _ => f b * (x - b) + RiemannInt (pr b h (Rle_refl b))
      end
  | right _ => f a * (x - a)
  end.

Lemma RiemannInt_P20 :
 forall (f:R -> R) (a b:R) (h:a <= b)
   (pr:forall x:R, a <= x -> x <= b -> Riemann_integrable f a x)
   (pr0:Riemann_integrable f a b),
   RiemannInt pr0 = primitive h pr b - primitive h pr a.
intros; replace (primitive h pr a) with 0.
replace (RiemannInt pr0) with (primitive h pr b).
ring.
unfold primitive in |- *; case (Rle_dec a b); case (Rle_dec b b); intros;
 [ apply RiemannInt_P5 | elim n; right; reflexivity | elim n; assumption | elim n0; assumption ].
symmetry in |- *; unfold primitive in |- *; case (Rle_dec a a);
 case (Rle_dec a b); intros;
 [ apply RiemannInt_P9 | elim n; assumption | elim n; right; reflexivity | elim n0; right; reflexivity ].
Qed.

Lemma RiemannInt_P21 :
 forall (f:R -> R) (a b c:R),
   a <= b ->
   b <= c ->
   Riemann_integrable f a b ->
   Riemann_integrable f b c -> Riemann_integrable f a c.
unfold Riemann_integrable in |- *; intros f a b c Hyp1 Hyp2 X X0 eps.
assert (H : 0 < eps / 2).
unfold Rdiv in |- *; apply Rmult_lt_0_compat;
 [ apply (cond_pos eps) | apply Rinv_0_lt_compat; prove_sup0 ].
elim (X (mkposreal _ H)); clear X; intros phi1 [psi1 H1];
 elim (X0 (mkposreal _ H)); clear X0; intros phi2 [psi2 H2].
set
 (phi3:=
  fun x:R =>
    match Rle_dec a x with
    | left _ =>
        match Rle_dec x b with
        | left _ => phi1 x
        | right _ => phi2 x
        end
    | right _ => 0
    end).
set
 (psi3:=
  fun x:R =>
    match Rle_dec a x with
    | left _ =>
        match Rle_dec x b with
        | left _ => psi1 x
        | right _ => psi2 x
        end
    | right _ => 0
    end).
cut (IsStepFun phi3 a c).
intro; cut (IsStepFun psi3 a b).
intro; cut (IsStepFun psi3 b c).
intro; cut (IsStepFun psi3 a c).
intro; split with (mkStepFun X); split with (mkStepFun X2); simpl in |- *;
 split.
intros; unfold phi3, psi3 in |- *; case (Rle_dec t b); case (Rle_dec a t);
 intros.
elim H1; intros; apply H3.
replace (Rmin a b) with a.
replace (Rmax a b) with b.
split; assumption.
unfold Rmax in |- *; case (Rle_dec a b); intro;
 [ reflexivity | elim n; assumption ].
unfold Rmin in |- *; case (Rle_dec a b); intro;
 [ reflexivity | elim n; assumption ].
elim n; replace a with (Rmin a c).
elim H0; intros; assumption.
unfold Rmin in |- *; case (Rle_dec a c); intro;
 [ reflexivity | elim n0; apply Rle_trans with b; assumption ].
elim H2; intros; apply H3.
replace (Rmax b c) with (Rmax a c).
elim H0; intros; split; try assumption.
replace (Rmin b c) with b.
auto with real.
unfold Rmin in |- *; case (Rle_dec b c); intro;
 [ reflexivity | elim n0; assumption ].
unfold Rmax in |- *; case (Rle_dec a c); case (Rle_dec b c); intros;
 try (elim n0; assumption || elim n0; apply Rle_trans with b; assumption).
reflexivity.
elim n; replace a with (Rmin a c).
elim H0; intros; assumption.
unfold Rmin in |- *; case (Rle_dec a c); intro;
 [ reflexivity | elim n1; apply Rle_trans with b; assumption ].
rewrite <- (StepFun_P43 X0 X1 X2).
apply Rle_lt_trans with
 (Rabs (RiemannInt_SF (mkStepFun X0)) + Rabs (RiemannInt_SF (mkStepFun X1))).
apply Rabs_triang.
rewrite (double_var eps);
 replace (RiemannInt_SF (mkStepFun X0)) with (RiemannInt_SF psi1).
replace (RiemannInt_SF (mkStepFun X1)) with (RiemannInt_SF psi2).
apply Rplus_lt_compat.
elim H1; intros; assumption.
elim H2; intros; assumption.
apply Rle_antisym.
apply StepFun_P37; try assumption.
simpl in |- *; intros; unfold psi3 in |- *; elim H0; clear H0; intros;
 case (Rle_dec a x); case (Rle_dec x b); intros;
 [ elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ r H0))
 | right; reflexivity
 | elim n; apply Rle_trans with b; [ assumption | left; assumption ]
 | elim n0; apply Rle_trans with b; [ assumption | left; assumption ] ].
apply StepFun_P37; try assumption.
simpl in |- *; intros; unfold psi3 in |- *; elim H0; clear H0; intros;
 case (Rle_dec a x); case (Rle_dec x b); intros;
 [ elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ r H0))
 | right; reflexivity
 | elim n; apply Rle_trans with b; [ assumption | left; assumption ]
 | elim n0; apply Rle_trans with b; [ assumption | left; assumption ] ].
apply Rle_antisym.
apply StepFun_P37; try assumption.
simpl in |- *; intros; unfold psi3 in |- *; elim H0; clear H0; intros;
 case (Rle_dec a x); case (Rle_dec x b); intros;
 [ right; reflexivity | elim n; left; assumption | elim n; left; assumption | elim n0; left; assumption ].
apply StepFun_P37; try assumption.
simpl in |- *; intros; unfold psi3 in |- *; elim H0; clear H0; intros;
 case (Rle_dec a x); case (Rle_dec x b); intros;
 [ right; reflexivity | elim n; left; assumption | elim n; left; assumption | elim n0; left; assumption ].
apply StepFun_P46 with b; assumption.
assert (H3:= pre psi2); unfold IsStepFun in H3; unfold is_subdivision in H3;
 elim H3; clear H3; intros l1 [lf1 H3]; split with l1;
 split with lf1; unfold adapted_couple in H3; decompose [and] H3;
 clear H3; unfold adapted_couple in |- *; repeat split;
 try assumption.
intros; assert (H9:= H8 i H3); unfold constant_D_eq, open_interval in |- *;
 unfold constant_D_eq, open_interval in H9; intros;
 rewrite <- (H9 x H7); unfold psi3 in |- *; assert (H10 : b < x).
apply Rle_lt_trans with (pos_Rl l1 i).
replace b with (Rmin b c).
rewrite <- H5; elim (RList_P6 l1); intros; apply H10; try assumption.
apply le_O_n.
apply lt_trans with (pred (Rlength l1)); try assumption; apply lt_pred_n_n;
 apply neq_O_lt; red in |- *; intro; rewrite <- H12 in H6;
 discriminate.
unfold Rmin in |- *; case (Rle_dec b c); intro;
 [ reflexivity | elim n; assumption ].
elim H7; intros; assumption.
case (Rle_dec a x); case (Rle_dec x b); intros;
 [ elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ r H10))
 | reflexivity
 | elim n; apply Rle_trans with b; [ assumption | left; assumption ]
 | elim n0; apply Rle_trans with b; [ assumption | left; assumption ] ].
assert (H3:= pre psi1); unfold IsStepFun in H3; unfold is_subdivision in H3;
 elim H3; clear H3; intros l1 [lf1 H3]; split with l1;
 split with lf1; unfold adapted_couple in H3; decompose [and] H3;
 clear H3; unfold adapted_couple in |- *; repeat split;
 try assumption.
intros; assert (H9:= H8 i H3); unfold constant_D_eq, open_interval in |- *;
 unfold constant_D_eq, open_interval in H9; intros;
 rewrite <- (H9 x H7); unfold psi3 in |- *; assert (H10 : x <= b).
apply Rle_trans with (pos_Rl l1 (S i)).
elim H7; intros; left; assumption.
replace b with (Rmax a b).
rewrite <- H4; elim (RList_P6 l1); intros; apply H10; try assumption.
apply lt_pred_n_n; apply neq_O_lt; red in |- *; intro; rewrite <- H12 in H6;
 discriminate.
unfold Rmax in |- *; case (Rle_dec a b); intro;
 [ reflexivity | elim n; assumption ].
assert (H11 : a <= x).
apply Rle_trans with (pos_Rl l1 i).
replace a with (Rmin a b).
rewrite <- H5; elim (RList_P6 l1); intros; apply H11; try assumption.
apply le_O_n.
apply lt_trans with (pred (Rlength l1)); try assumption; apply lt_pred_n_n;
 apply neq_O_lt; red in |- *; intro; rewrite <- H13 in H6;
 discriminate.
unfold Rmin in |- *; case (Rle_dec a b); intro;
 [ reflexivity | elim n; assumption ].
left; elim H7; intros; assumption.
case (Rle_dec a x); case (Rle_dec x b); intros; reflexivity || elim n;
 assumption.
apply StepFun_P46 with b.
assert (H3:= pre phi1); unfold IsStepFun in H3; unfold is_subdivision in H3;
 elim H3; clear H3; intros l1 [lf1 H3]; split with l1;
 split with lf1; unfold adapted_couple in H3; decompose [and] H3;
 clear H3; unfold adapted_couple in |- *; repeat split;
 try assumption.
intros; assert (H9:= H8 i H3); unfold constant_D_eq, open_interval in |- *;
 unfold constant_D_eq, open_interval in H9; intros;
 rewrite <- (H9 x H7); unfold psi3 in |- *; assert (H10 : x <= b).
apply Rle_trans with (pos_Rl l1 (S i)).
elim H7; intros; left; assumption.
replace b with (Rmax a b).
rewrite <- H4; elim (RList_P6 l1); intros; apply H10; try assumption.
apply lt_pred_n_n; apply neq_O_lt; red in |- *; intro; rewrite <- H12 in H6;
 discriminate.
unfold Rmax in |- *; case (Rle_dec a b); intro;
 [ reflexivity | elim n; assumption ].
assert (H11 : a <= x).
apply Rle_trans with (pos_Rl l1 i).
replace a with (Rmin a b).
rewrite <- H5; elim (RList_P6 l1); intros; apply H11; try assumption.
apply le_O_n.
apply lt_trans with (pred (Rlength l1)); try assumption; apply lt_pred_n_n;
 apply neq_O_lt; red in |- *; intro; rewrite <- H13 in H6;
 discriminate.
unfold Rmin in |- *; case (Rle_dec a b); intro;
 [ reflexivity | elim n; assumption ].
left; elim H7; intros; assumption.
unfold phi3 in |- *; case (Rle_dec a x); case (Rle_dec x b); intros;
 reflexivity || elim n; assumption.
assert (H3:= pre phi2); unfold IsStepFun in H3; unfold is_subdivision in H3;
 elim H3; clear H3; intros l1 [lf1 H3]; split with l1;
 split with lf1; unfold adapted_couple in H3; decompose [and] H3;
 clear H3; unfold adapted_couple in |- *; repeat split;
 try assumption.
intros; assert (H9:= H8 i H3); unfold constant_D_eq, open_interval in |- *;
 unfold constant_D_eq, open_interval in H9; intros;
 rewrite <- (H9 x H7); unfold psi3 in |- *; assert (H10 : b < x).
apply Rle_lt_trans with (pos_Rl l1 i).
replace b with (Rmin b c).
rewrite <- H5; elim (RList_P6 l1); intros; apply H10; try assumption.
apply le_O_n.
apply lt_trans with (pred (Rlength l1)); try assumption; apply lt_pred_n_n;
 apply neq_O_lt; red in |- *; intro; rewrite <- H12 in H6;
 discriminate.
unfold Rmin in |- *; case (Rle_dec b c); intro;
 [ reflexivity | elim n; assumption ].
elim H7; intros; assumption.
unfold phi3 in |- *; case (Rle_dec a x); case (Rle_dec x b); intros;
 [ elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ r H10))
 | reflexivity
 | elim n; apply Rle_trans with b; [ assumption | left; assumption ]
 | elim n0; apply Rle_trans with b; [ assumption | left; assumption ] ].
Qed.

Lemma RiemannInt_P22 :
 forall (f:R -> R) (a b c:R),
   Riemann_integrable f a b -> a <= c <= b -> Riemann_integrable f a c.
unfold Riemann_integrable in |- *; intros; elim (X eps); clear X;
 intros phi [psi H0]; elim H; elim H0; clear H H0;
 intros; assert (H3 : IsStepFun phi a c).
apply StepFun_P44 with b.
apply (pre phi).
split; assumption.
assert (H4 : IsStepFun psi a c).
apply StepFun_P44 with b.
apply (pre psi).
split; assumption.
split with (mkStepFun H3); split with (mkStepFun H4); split.
simpl in |- *; intros; apply H.
replace (Rmin a b) with (Rmin a c).
elim H5; intros; split; try assumption.
apply Rle_trans with (Rmax a c); try assumption.
replace (Rmax a b) with b.
replace (Rmax a c) with c.
assumption.
unfold Rmax in |- *; case (Rle_dec a c); intro;
 [ reflexivity | elim n; assumption ].
unfold Rmax in |- *; case (Rle_dec a b); intro;
 [ reflexivity | elim n; apply Rle_trans with c; assumption ].
unfold Rmin in |- *; case (Rle_dec a c); case (Rle_dec a b); intros;
 [ reflexivity | elim n; apply Rle_trans with c; assumption | elim n; assumption | elim n0; assumption ].
rewrite Rabs_right.
assert (H5 : IsStepFun psi c b).
apply StepFun_P46 with a.
apply StepFun_P6; assumption.
apply (pre psi).
replace (RiemannInt_SF (mkStepFun H4)) with
 (RiemannInt_SF psi - RiemannInt_SF (mkStepFun H5)).
apply Rle_lt_trans with (RiemannInt_SF psi).
unfold Rminus in |- *; pattern (RiemannInt_SF psi) at 2 in |- *;
 rewrite <- Rplus_0_r; apply Rplus_le_compat_l; rewrite <- Ropp_0;
 apply Ropp_ge_le_contravar; apply Rle_ge;
 replace 0 with (RiemannInt_SF (mkStepFun (StepFun_P4 c b 0))).
apply StepFun_P37; try assumption.
intros; simpl in |- *; unfold fct_cte in |- *;
 apply Rle_trans with (Rabs (f x - phi x)).
apply Rabs_pos.
apply H.
replace (Rmin a b) with a.
replace (Rmax a b) with b.
elim H6; intros; split; left.
apply Rle_lt_trans with c; assumption.
assumption.
unfold Rmax in |- *; case (Rle_dec a b); intro;
 [ reflexivity | elim n; apply Rle_trans with c; assumption ].
unfold Rmin in |- *; case (Rle_dec a b); intro;
 [ reflexivity | elim n; apply Rle_trans with c; assumption ].
rewrite StepFun_P18; ring.
apply Rle_lt_trans with (Rabs (RiemannInt_SF psi)).
apply RRle_abs.
assumption.
assert (H6 : IsStepFun psi a b).
apply (pre psi).
replace (RiemannInt_SF psi) with (RiemannInt_SF (mkStepFun H6)).
rewrite <- (StepFun_P43 H4 H5 H6); ring.
unfold RiemannInt_SF in |- *; case (Rle_dec a b); intro.
eapply StepFun_P17.
apply StepFun_P1.
simpl in |- *; apply StepFun_P1.
apply Ropp_eq_compat; eapply StepFun_P17.
apply StepFun_P1.
simpl in |- *; apply StepFun_P1.
apply Rle_ge; replace 0 with (RiemannInt_SF (mkStepFun (StepFun_P4 a c 0))).
apply StepFun_P37; try assumption.
intros; simpl in |- *; unfold fct_cte in |- *;
 apply Rle_trans with (Rabs (f x - phi x)).
apply Rabs_pos.
apply H.
replace (Rmin a b) with a.
replace (Rmax a b) with b.
elim H5; intros; split; left.
assumption.
apply Rlt_le_trans with c; assumption.
unfold Rmax in |- *; case (Rle_dec a b); intro;
 [ reflexivity | elim n; apply Rle_trans with c; assumption ].
unfold Rmin in |- *; case (Rle_dec a b); intro;
 [ reflexivity | elim n; apply Rle_trans with c; assumption ].
rewrite StepFun_P18; ring.
Qed.

Lemma RiemannInt_P23 :
 forall (f:R -> R) (a b c:R),
   Riemann_integrable f a b -> a <= c <= b -> Riemann_integrable f c b.
unfold Riemann_integrable in |- *; intros; elim (X eps); clear X;
 intros phi [psi H0]; elim H; elim H0; clear H H0;
 intros; assert (H3 : IsStepFun phi c b).
apply StepFun_P45 with a.
apply (pre phi).
split; assumption.
assert (H4 : IsStepFun psi c b).
apply StepFun_P45 with a.
apply (pre psi).
split; assumption.
split with (mkStepFun H3); split with (mkStepFun H4); split.
simpl in |- *; intros; apply H.
replace (Rmax a b) with (Rmax c b).
elim H5; intros; split; try assumption.
apply Rle_trans with (Rmin c b); try assumption.
replace (Rmin a b) with a.
replace (Rmin c b) with c.
assumption.
unfold Rmin in |- *; case (Rle_dec c b); intro;
 [ reflexivity | elim n; assumption ].
unfold Rmin in |- *; case (Rle_dec a b); intro;
 [ reflexivity | elim n; apply Rle_trans with c; assumption ].
unfold Rmax in |- *; case (Rle_dec c b); case (Rle_dec a b); intros;
 [ reflexivity | elim n; apply Rle_trans with c; assumption | elim n; assumption | elim n0; assumption ].
rewrite Rabs_right.
assert (H5 : IsStepFun psi a c).
apply StepFun_P46 with b.
apply (pre psi).
apply StepFun_P6; assumption.
replace (RiemannInt_SF (mkStepFun H4)) with
 (RiemannInt_SF psi - RiemannInt_SF (mkStepFun H5)).
apply Rle_lt_trans with (RiemannInt_SF psi).
unfold Rminus in |- *; pattern (RiemannInt_SF psi) at 2 in |- *;
 rewrite <- Rplus_0_r; apply Rplus_le_compat_l; rewrite <- Ropp_0;
 apply Ropp_ge_le_contravar; apply Rle_ge;
 replace 0 with (RiemannInt_SF (mkStepFun (StepFun_P4 a c 0))).
apply StepFun_P37; try assumption.
intros; simpl in |- *; unfold fct_cte in |- *;
 apply Rle_trans with (Rabs (f x - phi x)).
apply Rabs_pos.
apply H.
replace (Rmin a b) with a.
replace (Rmax a b) with b.
elim H6; intros; split; left.
assumption.
apply Rlt_le_trans with c; assumption.
unfold Rmax in |- *; case (Rle_dec a b); intro;
 [ reflexivity | elim n; apply Rle_trans with c; assumption ].
unfold Rmin in |- *; case (Rle_dec a b); intro;
 [ reflexivity | elim n; apply Rle_trans with c; assumption ].
rewrite StepFun_P18; ring.
apply Rle_lt_trans with (Rabs (RiemannInt_SF psi)).
apply RRle_abs.
assumption.
assert (H6 : IsStepFun psi a b).
apply (pre psi).
replace (RiemannInt_SF psi) with (RiemannInt_SF (mkStepFun H6)).
rewrite <- (StepFun_P43 H5 H4 H6); ring.
unfold RiemannInt_SF in |- *; case (Rle_dec a b); intro.
eapply StepFun_P17.
apply StepFun_P1.
simpl in |- *; apply StepFun_P1.
apply Ropp_eq_compat; eapply StepFun_P17.
apply StepFun_P1.
simpl in |- *; apply StepFun_P1.
apply Rle_ge; replace 0 with (RiemannInt_SF (mkStepFun (StepFun_P4 c b 0))).
apply StepFun_P37; try assumption.
intros; simpl in |- *; unfold fct_cte in |- *;
 apply Rle_trans with (Rabs (f x - phi x)).
apply Rabs_pos.
apply H.
replace (Rmin a b) with a.
replace (Rmax a b) with b.
elim H5; intros; split; left.
apply Rle_lt_trans with c; assumption.
assumption.
unfold Rmax in |- *; case (Rle_dec a b); intro;
 [ reflexivity | elim n; apply Rle_trans with c; assumption ].
unfold Rmin in |- *; case (Rle_dec a b); intro;
 [ reflexivity | elim n; apply Rle_trans with c; assumption ].
rewrite StepFun_P18; ring.
Qed.

Lemma RiemannInt_P24 :
 forall (f:R -> R) (a b c:R),
   Riemann_integrable f a b ->
   Riemann_integrable f b c -> Riemann_integrable f a c.
intros; case (Rle_dec a b); case (Rle_dec b c); intros.
apply RiemannInt_P21 with b; assumption.
case (Rle_dec a c); intro.
apply RiemannInt_P22 with b; try assumption.
split; [ assumption | auto with real ].
apply RiemannInt_P1; apply RiemannInt_P22 with b.
apply RiemannInt_P1; assumption.
split; auto with real.
case (Rle_dec a c); intro.
apply RiemannInt_P23 with b; try assumption.
split; auto with real.
apply RiemannInt_P1; apply RiemannInt_P23 with b.
apply RiemannInt_P1; assumption.
split; [ assumption | auto with real ].
apply RiemannInt_P1; apply RiemannInt_P21 with b;
 auto with real || apply RiemannInt_P1; assumption.
Qed.

Lemma RiemannInt_P25 :
 forall (f:R -> R) (a b c:R) (pr1:Riemann_integrable f a b)
   (pr2:Riemann_integrable f b c) (pr3:Riemann_integrable f a c),
   a <= b -> b <= c -> RiemannInt pr1 + RiemannInt pr2 = RiemannInt pr3.
intros f a b c pr1 pr2 pr3 Hyp1 Hyp2; unfold RiemannInt in |- *;
 case (RiemannInt_exists pr1 RinvN RinvN_cv);
 case (RiemannInt_exists pr2 RinvN RinvN_cv);
 case (RiemannInt_exists pr3 RinvN RinvN_cv); intros;
 symmetry in |- *; eapply UL_sequence.
apply u.
unfold Un_cv in |- *; intros; assert (H0 : 0 < eps / 3).
unfold Rdiv in |- *; apply Rmult_lt_0_compat;
 [ assumption | apply Rinv_0_lt_compat; prove_sup0 ].
elim (u1 _ H0); clear u1; intros N1 H1; elim (u0 _ H0); clear u0;
 intros N2 H2;
 cut
  (Un_cv
     (fun n:nat =>
        RiemannInt_SF (phi_sequence RinvN pr3 n) -
        (RiemannInt_SF (phi_sequence RinvN pr1 n) +
         RiemannInt_SF (phi_sequence RinvN pr2 n))) 0).
intro; elim (H3 _ H0); clear H3; intros N3 H3;
 set (N0:= max (max N1 N2) N3); exists N0; intros;
 unfold R_dist in |- *;
 apply Rle_lt_trans with
  (Rabs
     (RiemannInt_SF (phi_sequence RinvN pr3 n) -
      (RiemannInt_SF (phi_sequence RinvN pr1 n) +
       RiemannInt_SF (phi_sequence RinvN pr2 n))) +
   Rabs
     (RiemannInt_SF (phi_sequence RinvN pr1 n) +
      RiemannInt_SF (phi_sequence RinvN pr2 n) - (x1 + x0))).
replace (RiemannInt_SF (phi_sequence RinvN pr3 n) - (x1 + x0)) with
 (RiemannInt_SF (phi_sequence RinvN pr3 n) -
  (RiemannInt_SF (phi_sequence RinvN pr1 n) +
   RiemannInt_SF (phi_sequence RinvN pr2 n)) +
  (RiemannInt_SF (phi_sequence RinvN pr1 n) +
   RiemannInt_SF (phi_sequence RinvN pr2 n) - (x1 + x0)));
 [ apply Rabs_triang | ring ].
replace eps with (eps / 3 + eps / 3 + eps / 3).
rewrite Rplus_assoc; apply Rplus_lt_compat.
unfold R_dist in H3; cut (n >= N3)%nat.
intro; assert (H6:= H3 _ H5); unfold Rminus in H6; rewrite Ropp_0 in H6;
 rewrite Rplus_0_r in H6; apply H6.
unfold ge in |- *; apply le_trans with N0;
 [ unfold N0 in |- *; apply le_max_r | assumption ].
apply Rle_lt_trans with
 (Rabs (RiemannInt_SF (phi_sequence RinvN pr1 n) - x1) +
  Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n) - x0)).
replace
 (RiemannInt_SF (phi_sequence RinvN pr1 n) +
  RiemannInt_SF (phi_sequence RinvN pr2 n) - (x1 + x0)) with
 (RiemannInt_SF (phi_sequence RinvN pr1 n) - x1 +
  (RiemannInt_SF (phi_sequence RinvN pr2 n) - x0));
 [ apply Rabs_triang | ring ].
apply Rplus_lt_compat.
unfold R_dist in H1; apply H1.
unfold ge in |- *; apply le_trans with N0;
 [ apply le_trans with (max N1 N2);
    [ apply le_max_l | unfold N0 in |- *; apply le_max_l ]
 | assumption ].
unfold R_dist in H2; apply H2.
unfold ge in |- *; apply le_trans with N0;
 [ apply le_trans with (max N1 N2);
    [ apply le_max_r | unfold N0 in |- *; apply le_max_l ]
 | assumption ].
apply Rmult_eq_reg_l with 3;
 [ unfold Rdiv in |- *; repeat rewrite Rmult_plus_distr_l;
    do 2 rewrite (Rmult_comm 3); repeat rewrite Rmult_assoc;
    rewrite <- Rinv_l_sym; [ ring | discrR ]
 | discrR ].
clear x u x0 x1 eps H H0 N1 H1 N2 H2;
 assert
  (H1 :
    exists psi1 : nat -> StepFun a b,
     (forall n:nat,
        (forall t:R,
           Rmin a b <= t /\ t <= Rmax a b ->
           Rabs (f t - phi_sequence RinvN pr1 n t) <= psi1 n t) /\
        Rabs (RiemannInt_SF (psi1 n)) < RinvN n)).
split with (fun n:nat => projT1 (phi_sequence_prop RinvN pr1 n)); intro;
 apply (projT2 (phi_sequence_prop RinvN pr1 n)).
assert
 (H2 :
   exists psi2 : nat -> StepFun b c,
    (forall n:nat,
       (forall t:R,
          Rmin b c <= t /\ t <= Rmax b c ->
          Rabs (f t - phi_sequence RinvN pr2 n t) <= psi2 n t) /\
       Rabs (RiemannInt_SF (psi2 n)) < RinvN n)).
split with (fun n:nat => projT1 (phi_sequence_prop RinvN pr2 n)); intro;
 apply (projT2 (phi_sequence_prop RinvN pr2 n)).
assert
 (H3 :
   exists psi3 : nat -> StepFun a c,
    (forall n:nat,
       (forall t:R,
          Rmin a c <= t /\ t <= Rmax a c ->
          Rabs (f t - phi_sequence RinvN pr3 n t) <= psi3 n t) /\
       Rabs (RiemannInt_SF (psi3 n)) < RinvN n)).
split with (fun n:nat => projT1 (phi_sequence_prop RinvN pr3 n)); intro;
 apply (projT2 (phi_sequence_prop RinvN pr3 n)).
elim H1; clear H1; intros psi1 H1; elim H2; clear H2; intros psi2 H2; elim H3;
 clear H3; intros psi3 H3; assert (H:= RinvN_cv);
 unfold Un_cv in |- *; intros; assert (H4 : 0 < eps / 3).
unfold Rdiv in |- *; apply Rmult_lt_0_compat;
 [ assumption | apply Rinv_0_lt_compat; prove_sup0 ].
elim (H _ H4); clear H; intros N0 H;
 assert (H5 : forall n:nat, (n >= N0)%nat -> RinvN n < eps / 3).
intros;
 replace (pos (RinvN n)) with
  (R_dist (mkposreal (/ (INR n + 1)) (RinvN_pos n)) 0).
apply H; assumption.
unfold R_dist in |- *; unfold Rminus in |- *; rewrite Ropp_0;
 rewrite Rplus_0_r; apply Rabs_right; apply Rle_ge;
 left; apply (cond_pos (RinvN n)).
exists N0; intros; elim (H1 n); elim (H2 n); elim (H3 n); clear H1 H2 H3;
 intros; unfold R_dist in |- *; unfold Rminus in |- *;
 rewrite Ropp_0; rewrite Rplus_0_r; set (phi1:= phi_sequence RinvN pr1 n);
 fold phi1 in H8; set (phi2:= phi_sequence RinvN pr2 n);
 fold phi2 in H3; set (phi3:= phi_sequence RinvN pr3 n);
 fold phi2 in H1; assert (H10 : IsStepFun phi3 a b).
apply StepFun_P44 with c.
apply (pre phi3).
split; assumption.
assert (H11 : IsStepFun (psi3 n) a b).
apply StepFun_P44 with c.
apply (pre (psi3 n)).
split; assumption.
assert (H12 : IsStepFun phi3 b c).
apply StepFun_P45 with a.
apply (pre phi3).
split; assumption.
assert (H13 : IsStepFun (psi3 n) b c).
apply StepFun_P45 with a.
apply (pre (psi3 n)).
split; assumption.
replace (RiemannInt_SF phi3) with
 (RiemannInt_SF (mkStepFun H10) + RiemannInt_SF (mkStepFun H12)).
apply Rle_lt_trans with
 (Rabs (RiemannInt_SF (mkStepFun H10) - RiemannInt_SF phi1) +
  Rabs (RiemannInt_SF (mkStepFun H12) - RiemannInt_SF phi2)).
replace
 (RiemannInt_SF (mkStepFun H10) + RiemannInt_SF (mkStepFun H12) +
  - (RiemannInt_SF phi1 + RiemannInt_SF phi2)) with
 (RiemannInt_SF (mkStepFun H10) - RiemannInt_SF phi1 +
  (RiemannInt_SF (mkStepFun H12) - RiemannInt_SF phi2));
 [ apply Rabs_triang | ring ].
replace (RiemannInt_SF (mkStepFun H10) - RiemannInt_SF phi1) with
 (RiemannInt_SF (mkStepFun (StepFun_P28 (-1) (mkStepFun H10) phi1))).
replace (RiemannInt_SF (mkStepFun H12) - RiemannInt_SF phi2) with
 (RiemannInt_SF (mkStepFun (StepFun_P28 (-1) (mkStepFun H12) phi2))).
apply Rle_lt_trans with
 (RiemannInt_SF
    (mkStepFun
       (StepFun_P32 (mkStepFun (StepFun_P28 (-1) (mkStepFun H10) phi1)))) +
  RiemannInt_SF
    (mkStepFun
       (StepFun_P32 (mkStepFun (StepFun_P28 (-1) (mkStepFun H12) phi2))))).
apply Rle_trans with
 (Rabs (RiemannInt_SF (mkStepFun (StepFun_P28 (-1) (mkStepFun H10) phi1))) +
  RiemannInt_SF
    (mkStepFun
       (StepFun_P32 (mkStepFun (StepFun_P28 (-1) (mkStepFun H12) phi2))))).
apply Rplus_le_compat_l.
apply StepFun_P34; try assumption.
do 2
 rewrite <-
  (Rplus_comm
     (RiemannInt_SF
        (mkStepFun
           (StepFun_P32 (mkStepFun (StepFun_P28 (-1) (mkStepFun H12) phi2))))))
  ; apply Rplus_le_compat_l; apply StepFun_P34; try assumption.
apply Rle_lt_trans with
 (RiemannInt_SF (mkStepFun (StepFun_P28 1 (mkStepFun H11) (psi1 n))) +
  RiemannInt_SF (mkStepFun (StepFun_P28 1 (mkStepFun H13) (psi2 n)))).
apply Rle_trans with
 (RiemannInt_SF
    (mkStepFun
       (StepFun_P32 (mkStepFun (StepFun_P28 (-1) (mkStepFun H10) phi1)))) +
  RiemannInt_SF (mkStepFun (StepFun_P28 1 (mkStepFun H13) (psi2 n)))).
apply Rplus_le_compat_l; apply StepFun_P37; try assumption.
intros; simpl in |- *; rewrite Rmult_1_l;
 apply Rle_trans with (Rabs (f x - phi3 x) + Rabs (f x - phi2 x)).
rewrite <- (Rabs_Ropp (f x - phi3 x)); rewrite Ropp_minus_distr;
 replace (phi3 x + -1 * phi2 x) with (phi3 x - f x + (f x - phi2 x));
 [ apply Rabs_triang | ring ].
apply Rplus_le_compat.
fold phi3 in H1; apply H1.
elim H14; intros; split.
replace (Rmin a c) with a.
apply Rle_trans with b; try assumption.
left; assumption.
unfold Rmin in |- *; case (Rle_dec a c); intro;
 [ reflexivity | elim n0; apply Rle_trans with b; assumption ].
replace (Rmax a c) with c.
left; assumption.
unfold Rmax in |- *; case (Rle_dec a c); intro;
 [ reflexivity | elim n0; apply Rle_trans with b; assumption ].
apply H3.
elim H14; intros; split.
replace (Rmin b c) with b.
left; assumption.
unfold Rmin in |- *; case (Rle_dec b c); intro;
 [ reflexivity | elim n0; assumption ].
replace (Rmax b c) with c.
left; assumption.
unfold Rmax in |- *; case (Rle_dec b c); intro;
 [ reflexivity | elim n0; assumption ].
do 2
 rewrite <-
  (Rplus_comm
     (RiemannInt_SF (mkStepFun (StepFun_P28 1 (mkStepFun H13) (psi2 n)))))
  ; apply Rplus_le_compat_l; apply StepFun_P37; try assumption.
intros; simpl in |- *; rewrite Rmult_1_l;
 apply Rle_trans with (Rabs (f x - phi3 x) + Rabs (f x - phi1 x)).
rewrite <- (Rabs_Ropp (f x - phi3 x)); rewrite Ropp_minus_distr;
 replace (phi3 x + -1 * phi1 x) with (phi3 x - f x + (f x - phi1 x));
 [ apply Rabs_triang | ring ].
apply Rplus_le_compat.
apply H1.
elim H14; intros; split.
replace (Rmin a c) with a.
left; assumption.
unfold Rmin in |- *; case (Rle_dec a c); intro;
 [ reflexivity | elim n0; apply Rle_trans with b; assumption ].
replace (Rmax a c) with c.
apply Rle_trans with b.
left; assumption.
assumption.
unfold Rmax in |- *; case (Rle_dec a c); intro;
 [ reflexivity | elim n0; apply Rle_trans with b; assumption ].
apply H8.
elim H14; intros; split.
replace (Rmin a b) with a.
left; assumption.
unfold Rmin in |- *; case (Rle_dec a b); intro;
 [ reflexivity | elim n0; assumption ].
replace (Rmax a b) with b.
left; assumption.
unfold Rmax in |- *; case (Rle_dec a b); intro;
 [ reflexivity | elim n0; assumption ].
do 2 rewrite StepFun_P30.
do 2 rewrite Rmult_1_l;
 replace
  (RiemannInt_SF (mkStepFun H11) + RiemannInt_SF (psi1 n) +
   (RiemannInt_SF (mkStepFun H13) + RiemannInt_SF (psi2 n))) with
  (RiemannInt_SF (psi3 n) + RiemannInt_SF (psi1 n) + RiemannInt_SF (psi2 n)).
replace eps with (eps / 3 + eps / 3 + eps / 3).
repeat rewrite Rplus_assoc; repeat apply Rplus_lt_compat.
apply Rle_lt_trans with (Rabs (RiemannInt_SF (psi3 n))).
apply RRle_abs.
apply Rlt_trans with (pos (RinvN n)).
assumption.
apply H5; assumption.
apply Rle_lt_trans with (Rabs (RiemannInt_SF (psi1 n))).
apply RRle_abs.
apply Rlt_trans with (pos (RinvN n)).
assumption.
apply H5; assumption.
apply Rle_lt_trans with (Rabs (RiemannInt_SF (psi2 n))).
apply RRle_abs.
apply Rlt_trans with (pos (RinvN n)).
assumption.
apply H5; assumption.
apply Rmult_eq_reg_l with 3;
 [ unfold Rdiv in |- *; repeat rewrite Rmult_plus_distr_l;
    do 2 rewrite (Rmult_comm 3); repeat rewrite Rmult_assoc;
    rewrite <- Rinv_l_sym; [ ring | discrR ]
 | discrR ].
replace (RiemannInt_SF (psi3 n)) with
 (RiemannInt_SF (mkStepFun (pre (psi3 n)))).
rewrite <- (StepFun_P43 H11 H13 (pre (psi3 n))); ring.
reflexivity.
rewrite StepFun_P30; ring.
rewrite StepFun_P30; ring.
apply (StepFun_P43 H10 H12 (pre phi3)).
Qed.

Lemma RiemannInt_P26 :
 forall (f:R -> R) (a b c:R) (pr1:Riemann_integrable f a b)
   (pr2:Riemann_integrable f b c) (pr3:Riemann_integrable f a c),
   RiemannInt pr1 + RiemannInt pr2 = RiemannInt pr3.
intros; case (Rle_dec a b); case (Rle_dec b c); intros.
apply RiemannInt_P25; assumption.
case (Rle_dec a c); intro.
assert (H : c <= b).
auto with real.
rewrite <- (RiemannInt_P25 pr3 (RiemannInt_P1 pr2) pr1 r0 H);
 rewrite (RiemannInt_P8 pr2 (RiemannInt_P1 pr2)); ring.
assert (H : c <= a).
auto with real.
rewrite (RiemannInt_P8 pr2 (RiemannInt_P1 pr2));
 rewrite <- (RiemannInt_P25 (RiemannInt_P1 pr3) pr1 (RiemannInt_P1 pr2) H r);
 rewrite (RiemannInt_P8 pr3 (RiemannInt_P1 pr3)); ring.
assert (H : b <= a).
auto with real.
case (Rle_dec a c); intro.
rewrite <- (RiemannInt_P25 (RiemannInt_P1 pr1) pr3 pr2 H r0);
 rewrite (RiemannInt_P8 pr1 (RiemannInt_P1 pr1)); ring.
assert (H0 : c <= a).
auto with real.
rewrite (RiemannInt_P8 pr1 (RiemannInt_P1 pr1));
 rewrite <- (RiemannInt_P25 pr2 (RiemannInt_P1 pr3) (RiemannInt_P1 pr1) r H0);
 rewrite (RiemannInt_P8 pr3 (RiemannInt_P1 pr3)); ring.
rewrite (RiemannInt_P8 pr1 (RiemannInt_P1 pr1));
 rewrite (RiemannInt_P8 pr2 (RiemannInt_P1 pr2));
 rewrite (RiemannInt_P8 pr3 (RiemannInt_P1 pr3));
 rewrite <-
  (RiemannInt_P25 (RiemannInt_P1 pr2) (RiemannInt_P1 pr1) (RiemannInt_P1 pr3))
  ; [ ring | auto with real | auto with real ].
Qed.

Lemma RiemannInt_P27 :
 forall (f:R -> R) (a b x:R) (h:a <= b)
   (C0:forall x:R, a <= x <= b -> continuity_pt f x),
   a < x < b -> derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x).
intro f; intros; elim H; clear H; intros; assert (H1 : continuity_pt f x).
apply C0; split; left; assumption.
unfold derivable_pt_lim in |- *; intros; assert (Hyp : 0 < eps / 2).
unfold Rdiv in |- *; apply Rmult_lt_0_compat;
 [ assumption | apply Rinv_0_lt_compat; prove_sup0 ].
elim (H1 _ Hyp); unfold dist, D_x, no_cond in |- *; simpl in |- *;
 unfold R_dist in |- *; intros; set (del:= Rmin x0 (Rmin (b - x) (x - a)));
 assert (H4 : 0 < del).
unfold del in |- *; unfold Rmin in |- *; case (Rle_dec (b - x) (x - a));
 intro.
case (Rle_dec x0 (b - x)); intro;
 [ elim H3; intros; assumption | apply Rlt_Rminus; assumption ].
case (Rle_dec x0 (x - a)); intro;
 [ elim H3; intros; assumption | apply Rlt_Rminus; assumption ].
split with (mkposreal _ H4); intros;
 assert (H7 : Riemann_integrable f x (x + h0)).
case (Rle_dec x (x + h0)); intro.
apply continuity_implies_RiemannInt; try assumption.
intros; apply C0; elim H7; intros; split.
apply Rle_trans with x; [ left; assumption | assumption ].
apply Rle_trans with (x + h0).
assumption.
left; apply Rlt_le_trans with (x + del).
apply Rplus_lt_compat_l; apply Rle_lt_trans with (Rabs h0);
 [ apply RRle_abs | apply H6 ].
unfold del in |- *; apply Rle_trans with (x + Rmin (b - x) (x - a)).
apply Rplus_le_compat_l; apply Rmin_r.
pattern b at 2 in |- *; replace b with (x + (b - x));
 [ apply Rplus_le_compat_l; apply Rmin_l | ring ].
apply RiemannInt_P1; apply continuity_implies_RiemannInt; auto with real.
intros; apply C0; elim H7; intros; split.
apply Rle_trans with (x + h0).
left; apply Rle_lt_trans with (x - del).
unfold del in |- *; apply Rle_trans with (x - Rmin (b - x) (x - a)).
pattern a at 1 in |- *; replace a with (x + (a - x)); [ idtac | ring ].
unfold Rminus in |- *; apply Rplus_le_compat_l; apply Ropp_le_cancel.
rewrite Ropp_involutive; rewrite Ropp_plus_distr; rewrite Ropp_involutive;
 rewrite (Rplus_comm x); apply Rmin_r.
unfold Rminus in |- *; apply Rplus_le_compat_l; apply Ropp_le_cancel.
do 2 rewrite Ropp_involutive; apply Rmin_r.
unfold Rminus in |- *; apply Rplus_lt_compat_l; apply Ropp_lt_cancel.
rewrite Ropp_involutive; apply Rle_lt_trans with (Rabs h0);
 [ rewrite <- Rabs_Ropp; apply RRle_abs | apply H6 ].
assumption.
apply Rle_trans with x; [ assumption | left; assumption ].
replace (primitive h (FTC_P1 h C0) (x + h0) - primitive h (FTC_P1 h C0) x)
 with (RiemannInt H7).
replace (f x) with (RiemannInt (RiemannInt_P14 x (x + h0) (f x)) / h0).
replace
 (RiemannInt H7 / h0 - RiemannInt (RiemannInt_P14 x (x + h0) (f x)) / h0)
 with ((RiemannInt H7 - RiemannInt (RiemannInt_P14 x (x + h0) (f x))) / h0).
replace (RiemannInt H7 - RiemannInt (RiemannInt_P14 x (x + h0) (f x))) with
 (RiemannInt (RiemannInt_P10 (-1) H7 (RiemannInt_P14 x (x + h0) (f x)))).
unfold Rdiv in |- *; rewrite Rabs_mult; case (Rle_dec x (x + h0)); intro.
apply Rle_lt_trans with
 (RiemannInt
    (RiemannInt_P16
       (RiemannInt_P10 (-1) H7 (RiemannInt_P14 x (x + h0) (f x)))) *
  Rabs (/ h0)).
do 2 rewrite <- (Rmult_comm (Rabs (/ h0))); apply Rmult_le_compat_l.
apply Rabs_pos.
apply
 (RiemannInt_P17 (RiemannInt_P10 (-1) H7 (RiemannInt_P14 x (x + h0) (f x)))
    (RiemannInt_P16
       (RiemannInt_P10 (-1) H7 (RiemannInt_P14 x (x + h0) (f x)))));
 assumption.
apply Rle_lt_trans with
 (RiemannInt (RiemannInt_P14 x (x + h0) (eps / 2)) * Rabs (/ h0)).
do 2 rewrite <- (Rmult_comm (Rabs (/ h0))); apply Rmult_le_compat_l.
apply Rabs_pos.
apply RiemannInt_P19; try assumption.
intros; replace (f x1 + -1 * fct_cte (f x) x1) with (f x1 - f x).
unfold fct_cte in |- *; case (Req_dec x x1); intro.
rewrite H9; unfold Rminus in |- *; rewrite Rplus_opp_r; rewrite Rabs_R0; left;
 assumption.
elim H3; intros; left; apply H11.
repeat split.
assumption.
rewrite Rabs_right.
apply Rplus_lt_reg_r with x; replace (x + (x1 - x)) with x1; [ idtac | ring ].
apply Rlt_le_trans with (x + h0).
elim H8; intros; assumption.
apply Rplus_le_compat_l; apply Rle_trans with del.
left; apply Rle_lt_trans with (Rabs h0); [ apply RRle_abs | assumption ].
unfold del in |- *; apply Rmin_l.
apply Rge_minus; apply Rle_ge; left; elim H8; intros; assumption.
unfold fct_cte in |- *; ring.
rewrite RiemannInt_P15.
rewrite Rmult_assoc; replace ((x + h0 - x) * Rabs (/ h0)) with 1.
rewrite Rmult_1_r; unfold Rdiv in |- *; apply Rmult_lt_reg_l with 2;
 [ prove_sup0
 | rewrite <- (Rmult_comm (/ 2)); rewrite <- Rmult_assoc;
    rewrite <- Rinv_r_sym;
    [ rewrite Rmult_1_l; pattern eps at 1 in |- *; rewrite <- Rplus_0_r; rewrite double; apply Rplus_lt_compat_l; assumption | discrR ] ].
rewrite Rabs_right.
replace (x + h0 - x) with h0; [ idtac | ring ].
apply Rinv_r_sym.
assumption.
apply Rle_ge; left; apply Rinv_0_lt_compat.
elim r; intro.
apply Rplus_lt_reg_r with x; rewrite Rplus_0_r; assumption.
elim H5; symmetry in |- *; apply Rplus_eq_reg_l with x; rewrite Rplus_0_r;
 assumption.
apply Rle_lt_trans with
 (RiemannInt
    (RiemannInt_P16
       (RiemannInt_P1
          (RiemannInt_P10 (-1) H7 (RiemannInt_P14 x (x + h0) (f x))))) *
  Rabs (/ h0)).
do 2 rewrite <- (Rmult_comm (Rabs (/ h0))); apply Rmult_le_compat_l.
apply Rabs_pos.
replace
 (RiemannInt (RiemannInt_P10 (-1) H7 (RiemannInt_P14 x (x + h0) (f x)))) with
 (-
  RiemannInt
    (RiemannInt_P1 (RiemannInt_P10 (-1) H7 (RiemannInt_P14 x (x + h0) (f x))))).
rewrite Rabs_Ropp;
 apply
  (RiemannInt_P17
     (RiemannInt_P1
        (RiemannInt_P10 (-1) H7 (RiemannInt_P14 x (x + h0) (f x))))
     (RiemannInt_P16
        (RiemannInt_P1
           (RiemannInt_P10 (-1) H7 (RiemannInt_P14 x (x + h0) (f x))))));
 auto with real.
symmetry in |- *; apply RiemannInt_P8.
apply Rle_lt_trans with
 (RiemannInt (RiemannInt_P14 (x + h0) x (eps / 2)) * Rabs (/ h0)).
do 2 rewrite <- (Rmult_comm (Rabs (/ h0))); apply Rmult_le_compat_l.
apply Rabs_pos.
apply RiemannInt_P19.
auto with real.
intros; replace (f x1 + -1 * fct_cte (f x) x1) with (f x1 - f x).
unfold fct_cte in |- *; case (Req_dec x x1); intro.
rewrite H9; unfold Rminus in |- *; rewrite Rplus_opp_r; rewrite Rabs_R0; left;
 assumption.
elim H3; intros; left; apply H11.
repeat split.
assumption.
rewrite Rabs_left.
apply Rplus_lt_reg_r with (x1 - x0); replace (x1 - x0 + x0) with x1;
 [ idtac | ring ].
replace (x1 - x0 + - (x1 - x)) with (x - x0); [ idtac | ring ].
apply Rle_lt_trans with (x + h0).
unfold Rminus in |- *; apply Rplus_le_compat_l; apply Ropp_le_cancel.
rewrite Ropp_involutive; apply Rle_trans with (Rabs h0).
rewrite <- Rabs_Ropp; apply RRle_abs.
apply Rle_trans with del;
 [ left; assumption | unfold del in |- *; apply Rmin_l ].
elim H8; intros; assumption.
apply Rplus_lt_reg_r with x; rewrite Rplus_0_r;
 replace (x + (x1 - x)) with x1; [ elim H8; intros; assumption | ring ].
unfold fct_cte in |- *; ring.
rewrite RiemannInt_P15.
rewrite Rmult_assoc; replace ((x - (x + h0)) * Rabs (/ h0)) with 1.
rewrite Rmult_1_r; unfold Rdiv in |- *; apply Rmult_lt_reg_l with 2;
 [ prove_sup0
 | rewrite <- (Rmult_comm (/ 2)); rewrite <- Rmult_assoc;
    rewrite <- Rinv_r_sym;
    [ rewrite Rmult_1_l; pattern eps at 1 in |- *; rewrite <- Rplus_0_r; rewrite double; apply Rplus_lt_compat_l; assumption | discrR ] ].
rewrite Rabs_left.
replace (x - (x + h0)) with (- h0); [ idtac | ring ].
rewrite Ropp_mult_distr_l_reverse; rewrite Ropp_mult_distr_r_reverse;
 rewrite Ropp_involutive; apply Rinv_r_sym.
assumption.
apply Rinv_lt_0_compat.
assert (H8 : x + h0 < x).
auto with real.
apply Rplus_lt_reg_r with x; rewrite Rplus_0_r; assumption.
rewrite
 (RiemannInt_P13 H7 (RiemannInt_P14 x (x + h0) (f x))
    (RiemannInt_P10 (-1) H7 (RiemannInt_P14 x (x + h0) (f x))))
 .
ring.
unfold Rdiv, Rminus in |- *; rewrite Rmult_plus_distr_r; ring.
rewrite RiemannInt_P15; apply Rmult_eq_reg_l with h0;
 [ unfold Rdiv in |- *; rewrite (Rmult_comm h0); repeat rewrite Rmult_assoc;
    rewrite <- Rinv_l_sym; [ ring | assumption ]
 | assumption ].
cut (a <= x + h0).
cut (x + h0 <= b).
intros; unfold primitive in |- *.
case (Rle_dec a (x + h0)); case (Rle_dec (x + h0) b); case (Rle_dec a x);
 case (Rle_dec x b); intros; try (elim n; assumption || left; assumption).
rewrite <- (RiemannInt_P26 (FTC_P1 h C0 r0 r) H7 (FTC_P1 h C0 r2 r1)); ring.
apply Rplus_le_reg_l with (- x); replace (- x + (x + h0)) with h0;
 [ idtac | ring ].
rewrite Rplus_comm; apply Rle_trans with (Rabs h0).
apply RRle_abs.
apply Rle_trans with del;
 [ left; assumption
 | unfold del in |- *; apply Rle_trans with (Rmin (b - x) (x - a));
    [ apply Rmin_r | apply Rmin_l ] ].
apply Ropp_le_cancel; apply Rplus_le_reg_l with x;
 replace (x + - (x + h0)) with (- h0); [ idtac | ring ].
apply Rle_trans with (Rabs h0);
 [ rewrite <- Rabs_Ropp; apply RRle_abs
 | apply Rle_trans with del;
    [ left; assumption | unfold del in |- *; apply Rle_trans with (Rmin (b - x) (x - a)); apply Rmin_r ] ].
Qed.

Lemma RiemannInt_P28 :
 forall (f:R -> R) (a b x:R) (h:a <= b)
   (C0:forall x:R, a <= x <= b -> continuity_pt f x),
   a <= x <= b -> derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x).
intro f; intros; elim h; intro.
elim H; clear H; intros; elim H; intro.
elim H1; intro.
apply RiemannInt_P27; split; assumption.
set
 (f_b:= fun x:R => f b * (x - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)));
 rewrite H3.
assert (H4 : derivable_pt_lim f_b b (f b)).
unfold f_b in |- *; pattern (f b) at 2 in |- *; replace (f b) with (f b + 0).
change
  (derivable_pt_lim
     ((fct_cte (f b) * (id - fct_cte b))%F +
      fct_cte (RiemannInt (FTC_P1 h C0 h (Rle_refl b)))) b (
     f b + 0)) in |- *.
apply derivable_pt_lim_plus.
pattern (f b) at 2 in |- *;
 replace (f b) with (0 * (id - fct_cte b)%F b + fct_cte (f b) b * 1).
apply derivable_pt_lim_mult.
apply derivable_pt_lim_const.
replace 1 with (1 - 0); [ idtac | ring ].
apply derivable_pt_lim_minus.
apply derivable_pt_lim_id.
apply derivable_pt_lim_const.
unfold fct_cte in |- *; ring.
apply derivable_pt_lim_const.
ring.
unfold derivable_pt_lim in |- *; intros; elim (H4 _ H5); intros;
 assert (H7 : continuity_pt f b).
apply C0; split; [ left; assumption | right; reflexivity ].
assert (H8 : 0 < eps / 2).
unfold Rdiv in |- *; apply Rmult_lt_0_compat;
 [ assumption | apply Rinv_0_lt_compat; prove_sup0 ].
elim (H7 _ H8); unfold D_x, no_cond, dist in |- *; simpl in |- *;
 unfold R_dist in |- *; intros; set (del:= Rmin x0 (Rmin x1 (b - a)));
 assert (H10 : 0 < del).
unfold del in |- *; unfold Rmin in |- *; case (Rle_dec x1 (b - a)); intros.
case (Rle_dec x0 x1); intro;
 [ apply (cond_pos x0) | elim H9; intros; assumption ].
case (Rle_dec x0 (b - a)); intro;
 [ apply (cond_pos x0) | apply Rlt_Rminus; assumption ].
split with (mkposreal _ H10); intros; case (Rcase_abs h0); intro.
assert (H14 : b + h0 < b).
pattern b at 2 in |- *; rewrite <- Rplus_0_r; apply Rplus_lt_compat_l;
 assumption.
assert (H13 : Riemann_integrable f (b + h0) b).
apply continuity_implies_RiemannInt.
left; assumption.
intros; apply C0; elim H13; intros; split; try assumption.
apply Rle_trans with (b + h0); try assumption.
apply Rplus_le_reg_l with (- a - h0).
replace (- a - h0 + a) with (- h0); [ idtac | ring ].
replace (- a - h0 + (b + h0)) with (b - a); [ idtac | ring ].
apply Rle_trans with del.
apply Rle_trans with (Rabs h0).
rewrite <- Rabs_Ropp; apply RRle_abs.
left; assumption.
unfold del in |- *; apply Rle_trans with (Rmin x1 (b - a)); apply Rmin_r.
replace (primitive h (FTC_P1 h C0) (b + h0) - primitive h (FTC_P1 h C0) b)
 with (- RiemannInt H13).
replace (f b) with (- RiemannInt (RiemannInt_P14 (b + h0) b (f b)) / h0).
rewrite <- Rabs_Ropp; unfold Rminus in |- *; unfold Rdiv in |- *;
 rewrite Ropp_mult_distr_l_reverse; rewrite Ropp_plus_distr;
 repeat rewrite Ropp_involutive;
 replace
  (RiemannInt H13 * / h0 +
   - RiemannInt (RiemannInt_P14 (b + h0) b (f b)) * / h0) with
  ((RiemannInt H13 - RiemannInt (RiemannInt_P14 (b + h0) b (f b))) / h0).
replace (RiemannInt H13 - RiemannInt (RiemannInt_P14 (b + h0) b (f b))) with
 (RiemannInt (RiemannInt_P10 (-1) H13 (RiemannInt_P14 (b + h0) b (f b)))).
unfold Rdiv in |- *; rewrite Rabs_mult;
 apply Rle_lt_trans with
  (RiemannInt
     (RiemannInt_P16
        (RiemannInt_P10 (-1) H13 (RiemannInt_P14 (b + h0) b (f b)))) *
   Rabs (/ h0)).
do 2 rewrite <- (Rmult_comm (Rabs (/ h0))); apply Rmult_le_compat_l.
apply Rabs_pos.
apply
 (RiemannInt_P17 (RiemannInt_P10 (-1) H13 (RiemannInt_P14 (b + h0) b (f b)))
    (RiemannInt_P16
       (RiemannInt_P10 (-1) H13 (RiemannInt_P14 (b + h0) b (f b)))));
 left; assumption.
apply Rle_lt_trans with
 (RiemannInt (RiemannInt_P14 (b + h0) b (eps / 2)) * Rabs (/ h0)).
do 2 rewrite <- (Rmult_comm (Rabs (/ h0))); apply Rmult_le_compat_l.
apply Rabs_pos.
apply RiemannInt_P19.
left; assumption.
intros; replace (f x2 + -1 * fct_cte (f b) x2) with (f x2 - f b).
unfold fct_cte in |- *; case (Req_dec b x2); intro.
rewrite H16; unfold Rminus in |- *; rewrite Rplus_opp_r; rewrite Rabs_R0;
 left; assumption.
elim H9; intros; left; apply H18.
repeat split.
assumption.
rewrite <- Rabs_Ropp; rewrite Ropp_minus_distr; rewrite Rabs_right.
apply Rplus_lt_reg_r with (x2 - x1);
 replace (x2 - x1 + (b - x2)) with (b - x1); [ idtac | ring ].
replace (x2 - x1 + x1) with x2; [ idtac | ring ].
apply Rlt_le_trans with (b + h0).
2: elim H15; intros; left; assumption.
unfold Rminus in |- *; apply Rplus_lt_compat_l; apply Ropp_lt_cancel;
 rewrite Ropp_involutive; apply Rle_lt_trans with (Rabs h0).
rewrite <- Rabs_Ropp; apply RRle_abs.
apply Rlt_le_trans with del;
 [ assumption
 | unfold del in |- *; apply Rle_trans with (Rmin x1 (b - a));
    [ apply Rmin_r | apply Rmin_l ] ].
apply Rle_ge; left; apply Rlt_Rminus; elim H15; intros; assumption.
unfold fct_cte in |- *; ring.
rewrite RiemannInt_P15.
rewrite Rmult_assoc; replace ((b - (b + h0)) * Rabs (/ h0)) with 1.
rewrite Rmult_1_r; unfold Rdiv in |- *; apply Rmult_lt_reg_l with 2;
 [ prove_sup0
 | rewrite <- (Rmult_comm (/ 2)); rewrite <- Rmult_assoc;
    rewrite <- Rinv_r_sym;
    [ rewrite Rmult_1_l; pattern eps at 1 in |- *; rewrite <- Rplus_0_r; rewrite double; apply Rplus_lt_compat_l; assumption | discrR ] ].
rewrite Rabs_left.
apply Rmult_eq_reg_l with h0;
 [ do 2 rewrite (Rmult_comm h0); rewrite Rmult_assoc;
    rewrite Ropp_mult_distr_l_reverse; rewrite <- Rinv_l_sym;
    [ ring | assumption ]
 | assumption ].
apply Rinv_lt_0_compat; assumption.
rewrite
 (RiemannInt_P13 H13 (RiemannInt_P14 (b + h0) b (f b))
    (RiemannInt_P10 (-1) H13 (RiemannInt_P14 (b + h0) b (f b))))
 ; ring.
unfold Rdiv, Rminus in |- *; rewrite Rmult_plus_distr_r; ring.
rewrite RiemannInt_P15.
rewrite <- Ropp_mult_distr_l_reverse; apply Rmult_eq_reg_l with h0;
 [ repeat rewrite (Rmult_comm h0); unfold Rdiv in |- *;
    repeat rewrite Rmult_assoc; rewrite <- Rinv_l_sym;
    [ ring | assumption ]
 | assumption ].
cut (a <= b + h0).
cut (b + h0 <= b).
intros; unfold primitive in |- *; case (Rle_dec a (b + h0));
 case (Rle_dec (b + h0) b); case (Rle_dec a b); case (Rle_dec b b);
 intros; try (elim n; right; reflexivity) || (elim n; left; assumption).
rewrite <- (RiemannInt_P26 (FTC_P1 h C0 r3 r2) H13 (FTC_P1 h C0 r1 r0)); ring.
elim n; assumption.
left; assumption.
apply Rplus_le_reg_l with (- a - h0).
replace (- a - h0 + a) with (- h0); [ idtac | ring ].
replace (- a - h0 + (b + h0)) with (b - a); [ idtac | ring ].
apply Rle_trans with del.
apply Rle_trans with (Rabs h0).
rewrite <- Rabs_Ropp; apply RRle_abs.
left; assumption.
unfold del in |- *; apply Rle_trans with (Rmin x1 (b - a)); apply Rmin_r.
cut (primitive h (FTC_P1 h C0) b = f_b b).
intro; cut (primitive h (FTC_P1 h C0) (b + h0) = f_b (b + h0)).
intro; rewrite H13; rewrite H14; apply H6.
assumption.
apply Rlt_le_trans with del;
 [ assumption | unfold del in |- *; apply Rmin_l ].
assert (H14 : b < b + h0).
pattern b at 1 in |- *; rewrite <- Rplus_0_r; apply Rplus_lt_compat_l.
assert (H14:= Rge_le _ _ r); elim H14; intro.
assumption.
elim H11; symmetry in |- *; assumption.
unfold primitive in |- *; case (Rle_dec a (b + h0));
 case (Rle_dec (b + h0) b); intros;
 [ elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ r0 H14)) | unfold f_b in |- *; reflexivity | elim n; left; apply Rlt_trans with b; assumption | elim n0; left; apply Rlt_trans with b; assumption ].
unfold f_b in |- *; unfold Rminus in |- *; rewrite Rplus_opp_r;
 rewrite Rmult_0_r; rewrite Rplus_0_l; unfold primitive in |- *;
 case (Rle_dec a b); case (Rle_dec b b); intros;
 [ apply RiemannInt_P5 | elim n; right; reflexivity | elim n; left; assumption | elim n; right; reflexivity ].
set (f_a:= fun x:R => f a * (x - a)); rewrite <- H2;
 assert (H3 : derivable_pt_lim f_a a (f a)).
unfold f_a in |- *;
 change (derivable_pt_lim (fct_cte (f a) * (id - fct_cte a)%F) a (f a))
  in |- *; pattern (f a) at 2 in |- *;
 replace (f a) with (0 * (id - fct_cte a)%F a + fct_cte (f a) a * 1).
apply derivable_pt_lim_mult.
apply derivable_pt_lim_const.
replace 1 with (1 - 0); [ idtac | ring ].
apply derivable_pt_lim_minus.
apply derivable_pt_lim_id.
apply derivable_pt_lim_const.
unfold fct_cte in |- *; ring.
unfold derivable_pt_lim in |- *; intros; elim (H3 _ H4); intros.
assert (H6 : continuity_pt f a).
apply C0; split; [ right; reflexivity | left; assumption ].
assert (H7 : 0 < eps / 2).
unfold Rdiv in |- *; apply Rmult_lt_0_compat;
 [ assumption | apply Rinv_0_lt_compat; prove_sup0 ].
elim (H6 _ H7); unfold D_x, no_cond, dist in |- *; simpl in |- *;
 unfold R_dist in |- *; intros.
set (del:= Rmin x0 (Rmin x1 (b - a))).
assert (H9 : 0 < del).
unfold del in |- *; unfold Rmin in |- *.
case (Rle_dec x1 (b - a)); intros.
case (Rle_dec x0 x1); intro.
apply (cond_pos x0).
elim H8; intros; assumption.
case (Rle_dec x0 (b - a)); intro.
apply (cond_pos x0).
apply Rlt_Rminus; assumption.
split with (mkposreal _ H9).
intros; case (Rcase_abs h0); intro.
assert (H12 : a + h0 < a).
pattern a at 2 in |- *; rewrite <- Rplus_0_r; apply Rplus_lt_compat_l;
 assumption.
unfold primitive in |- *.
case (Rle_dec a (a + h0)); case (Rle_dec (a + h0) b); case (Rle_dec a a);
 case (Rle_dec a b); intros;
 try (elim n; left; assumption) || (elim n; right; reflexivity).
elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ r3 H12)).
elim n; left; apply Rlt_trans with a; assumption.
rewrite RiemannInt_P9; replace 0 with (f_a a).
replace (f a * (a + h0 - a)) with (f_a (a + h0)).
apply H5; try assumption.
apply Rlt_le_trans with del;
 [ assumption | unfold del in |- *; apply Rmin_l ].
unfold f_a in |- *; ring.
unfold f_a in |- *; ring.
elim n; left; apply Rlt_trans with a; assumption.
assert (H12 : a < a + h0).
pattern a at 1 in |- *; rewrite <- Rplus_0_r; apply Rplus_lt_compat_l.
assert (H12:= Rge_le _ _ r); elim H12; intro.
assumption.
elim H10; symmetry in |- *; assumption.
assert (H13 : Riemann_integrable f a (a + h0)).
apply continuity_implies_RiemannInt.
left; assumption.
intros; apply C0; elim H13; intros; split; try assumption.
apply Rle_trans with (a + h0); try assumption.
apply Rplus_le_reg_l with (- b - h0).
replace (- b - h0 + b) with (- h0); [ idtac | ring ].
replace (- b - h0 + (a + h0)) with (a - b); [ idtac | ring ].
apply Ropp_le_cancel; rewrite Ropp_involutive; rewrite Ropp_minus_distr;
 apply Rle_trans with del.
apply Rle_trans with (Rabs h0); [ apply RRle_abs | left; assumption ].
unfold del in |- *; apply Rle_trans with (Rmin x1 (b - a)); apply Rmin_r.
replace (primitive h (FTC_P1 h C0) (a + h0) - primitive h (FTC_P1 h C0) a)
 with (RiemannInt H13).
replace (f a) with (RiemannInt (RiemannInt_P14 a (a + h0) (f a)) / h0).
replace
 (RiemannInt H13 / h0 - RiemannInt (RiemannInt_P14 a (a + h0) (f a)) / h0)
 with ((RiemannInt H13 - RiemannInt (RiemannInt_P14 a (a + h0) (f a))) / h0).
replace (RiemannInt H13 - RiemannInt (RiemannInt_P14 a (a + h0) (f a))) with
 (RiemannInt (RiemannInt_P10 (-1) H13 (RiemannInt_P14 a (a + h0) (f a)))).
unfold Rdiv in |- *; rewrite Rabs_mult;
 apply Rle_lt_trans with
  (RiemannInt
     (RiemannInt_P16
        (RiemannInt_P10 (-1) H13 (RiemannInt_P14 a (a + h0) (f a)))) *
   Rabs (/ h0)).
do 2 rewrite <- (Rmult_comm (Rabs (/ h0))); apply Rmult_le_compat_l.
apply Rabs_pos.
apply
 (RiemannInt_P17 (RiemannInt_P10 (-1) H13 (RiemannInt_P14 a (a + h0) (f a)))
    (RiemannInt_P16
       (RiemannInt_P10 (-1) H13 (RiemannInt_P14 a (a + h0) (f a)))));
 left; assumption.
apply Rle_lt_trans with
 (RiemannInt (RiemannInt_P14 a (a + h0) (eps / 2)) * Rabs (/ h0)).
do 2 rewrite <- (Rmult_comm (Rabs (/ h0))); apply Rmult_le_compat_l.
apply Rabs_pos.
apply RiemannInt_P19.
left; assumption.
intros; replace (f x2 + -1 * fct_cte (f a) x2) with (f x2 - f a).
unfold fct_cte in |- *; case (Req_dec a x2); intro.
rewrite H15; unfold Rminus in |- *; rewrite Rplus_opp_r; rewrite Rabs_R0;
 left; assumption.
elim H8; intros; left; apply H17; repeat split.
assumption.
rewrite Rabs_right.
apply Rplus_lt_reg_r with a; replace (a + (x2 - a)) with x2; [ idtac | ring ].
apply Rlt_le_trans with (a + h0).
elim H14; intros; assumption.
apply Rplus_le_compat_l; left; apply Rle_lt_trans with (Rabs h0).
apply RRle_abs.
apply Rlt_le_trans with del;
 [ assumption
 | unfold del in |- *; apply Rle_trans with (Rmin x1 (b - a));
    [ apply Rmin_r | apply Rmin_l ] ].
apply Rle_ge; left; apply Rlt_Rminus; elim H14; intros; assumption.
unfold fct_cte in |- *; ring.
rewrite RiemannInt_P15.
rewrite Rmult_assoc; replace ((a + h0 - a) * Rabs (/ h0)) with 1.
rewrite Rmult_1_r; unfold Rdiv in |- *; apply Rmult_lt_reg_l with 2;
 [ prove_sup0
 | rewrite <- (Rmult_comm (/ 2)); rewrite <- Rmult_assoc;
    rewrite <- Rinv_r_sym;
    [ rewrite Rmult_1_l; pattern eps at 1 in |- *; rewrite <- Rplus_0_r; rewrite double; apply Rplus_lt_compat_l; assumption | discrR ] ].
rewrite Rabs_right.
rewrite Rplus_comm; unfold Rminus in |- *; rewrite Rplus_assoc;
 rewrite Rplus_opp_r; rewrite Rplus_0_r; rewrite <- Rinv_r_sym;
 [ reflexivity | assumption ].
apply Rle_ge; left; apply Rinv_0_lt_compat; assert (H14:= Rge_le _ _ r);
 elim H14; intro.
assumption.
elim H10; symmetry in |- *; assumption.
rewrite
 (RiemannInt_P13 H13 (RiemannInt_P14 a (a + h0) (f a))
    (RiemannInt_P10 (-1) H13 (RiemannInt_P14 a (a + h0) (f a))))
 ; ring.
unfold Rdiv, Rminus in |- *; rewrite Rmult_plus_distr_r; ring.
rewrite RiemannInt_P15.
rewrite Rplus_comm; unfold Rminus in |- *; rewrite Rplus_assoc;
 rewrite Rplus_opp_r; rewrite Rplus_0_r; unfold Rdiv in |- *;
 rewrite Rmult_assoc; rewrite <- Rinv_r_sym; [ ring | assumption ].
cut (a <= a + h0).
cut (a + h0 <= b).
intros; unfold primitive in |- *; case (Rle_dec a (a + h0));
 case (Rle_dec (a + h0) b); case (Rle_dec a a); case (Rle_dec a b);
 intros; try (elim n; right; reflexivity) || (elim n; left; assumption).
rewrite RiemannInt_P9; unfold Rminus in |- *; rewrite Ropp_0;
 rewrite Rplus_0_r; apply RiemannInt_P5.
elim n; assumption.
elim n; assumption.
2: left; assumption.
apply Rplus_le_reg_l with (- a); replace (- a + (a + h0)) with h0;
 [ idtac | ring ].
rewrite Rplus_comm; apply Rle_trans with del;
 [ apply Rle_trans with (Rabs h0); [ apply RRle_abs | left; assumption ]
 | unfold del in |- *; apply Rle_trans with (Rmin x1 (b - a)); apply Rmin_r ].
assert (H1 : x = a).
rewrite <- H0 in H; elim H; intros; apply Rle_antisym; assumption.
set (f_a:= fun x:R => f a * (x - a)).
assert (H2 : derivable_pt_lim f_a a (f a)).
unfold f_a in |- *;
 change (derivable_pt_lim (fct_cte (f a) * (id - fct_cte a)%F) a (f a))
  in |- *; pattern (f a) at 2 in |- *;
 replace (f a) with (0 * (id - fct_cte a)%F a + fct_cte (f a) a * 1).
apply derivable_pt_lim_mult.
apply derivable_pt_lim_const.
replace 1 with (1 - 0); [ idtac | ring ].
apply derivable_pt_lim_minus.
apply derivable_pt_lim_id.
apply derivable_pt_lim_const.
unfold fct_cte in |- *; ring.
set
 (f_b:= fun x:R => f b * (x - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b))).
assert (H3 : derivable_pt_lim f_b b (f b)).
unfold f_b in |- *; pattern (f b) at 2 in |- *; replace (f b) with (f b + 0).
change
  (derivable_pt_lim
     ((fct_cte (f b) * (id - fct_cte b))%F +
      fct_cte (RiemannInt (FTC_P1 h C0 h (Rle_refl b)))) b (
     f b + 0)) in |- *.
apply derivable_pt_lim_plus.
pattern (f b) at 2 in |- *;
 replace (f b) with (0 * (id - fct_cte b)%F b + fct_cte (f b) b * 1).
apply derivable_pt_lim_mult.
apply derivable_pt_lim_const.
replace 1 with (1 - 0); [ idtac | ring ].
apply derivable_pt_lim_minus.
apply derivable_pt_lim_id.
apply derivable_pt_lim_const.
unfold fct_cte in |- *; ring.
apply derivable_pt_lim_const.
ring.
unfold derivable_pt_lim in |- *; intros; elim (H2 _ H4); intros;
 elim (H3 _ H4); intros; set (del:= Rmin x0 x1).
assert (H7 : 0 < del).
unfold del in |- *; unfold Rmin in |- *; case (Rle_dec x0 x1); intro.
apply (cond_pos x0).
apply (cond_pos x1).
split with (mkposreal _ H7); intros; case (Rcase_abs h0); intro.
assert (H10 : a + h0 < a).
pattern a at 2 in |- *; rewrite <- Rplus_0_r; apply Rplus_lt_compat_l;
 assumption.
rewrite H1; unfold primitive in |- *; case (Rle_dec a (a + h0));
 case (Rle_dec (a + h0) b); case (Rle_dec a a); case (Rle_dec a b);
 intros; try (elim n; right; assumption || reflexivity).
elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ r3 H10)).
elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ r2 H10)).
rewrite RiemannInt_P9; replace 0 with (f_a a).
replace (f a * (a + h0 - a)) with (f_a (a + h0)).
apply H5; try assumption.
apply Rlt_le_trans with del; try assumption.
unfold del in |- *; apply Rmin_l.
unfold f_a in |- *; ring.
unfold f_a in |- *; ring.
elim n; rewrite <- H0; left; assumption.
assert (H10 : a < a + h0).
pattern a at 1 in |- *; rewrite <- Rplus_0_r; apply Rplus_lt_compat_l.
assert (H10:= Rge_le _ _ r); elim H10; intro.
assumption.
elim H8; symmetry in |- *; assumption.
rewrite H0 in H1; rewrite H1; unfold primitive in |- *;
 case (Rle_dec a (b + h0)); case (Rle_dec (b + h0) b);
 case (Rle_dec a b); case (Rle_dec b b); intros;
 try (elim n; right; assumption || reflexivity).
rewrite H0 in H10; elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ r2 H10)).
repeat rewrite RiemannInt_P9.
replace (RiemannInt (FTC_P1 h C0 r1 r0)) with (f_b b).
fold (f_b (b + h0)) in |- *.
apply H6; try assumption.
apply Rlt_le_trans with del; try assumption.
unfold del in |- *; apply Rmin_r.
unfold f_b in |- *; unfold Rminus in |- *; rewrite Rplus_opp_r;
 rewrite Rmult_0_r; rewrite Rplus_0_l; apply RiemannInt_P5.
elim n; rewrite <- H0; left; assumption.
elim n0; rewrite <- H0; left; assumption.
Qed.

Lemma RiemannInt_P29 :
 forall (f:R -> R) a b (h:a <= b)
   (C0:forall x:R, a <= x <= b -> continuity_pt f x),
   antiderivative f (primitive h (FTC_P1 h C0)) a b.
intro f; intros; unfold antiderivative in |- *; split; try assumption; intros;
 assert (H0:= RiemannInt_P28 h C0 H);
 assert (H1 : derivable_pt (primitive h (FTC_P1 h C0)) x);
 [ unfold derivable_pt in |- *; split with (f x); apply H0 | split with H1; symmetry in |- *; apply derive_pt_eq_0; apply H0 ].
Qed.

Lemma RiemannInt_P30 :
 forall (f:R -> R) (a b:R),
   a <= b ->
   (forall x:R, a <= x <= b -> continuity_pt f x) ->
   sigT (fun g:R -> R => antiderivative f g a b).
intros; split with (primitive H (FTC_P1 H H0)); apply RiemannInt_P29.
Qed.

Record C1_fun : Type := mkC1
  {c1 :> R -> R; diff0 : derivable c1; cont1 : continuity (derive c1 diff0)}.

Lemma RiemannInt_P31 :
 forall (f:C1_fun) (a b:R),
   a <= b -> antiderivative (derive f (diff0 f)) f a b.
intro f; intros; unfold antiderivative in |- *; split; try assumption; intros;
 split with (diff0 f x); reflexivity.
Qed.

Lemma RiemannInt_P32 :
 forall (f:C1_fun) (a b:R), Riemann_integrable (derive f (diff0 f)) a b.
intro f; intros; case (Rle_dec a b); intro;
 [ apply continuity_implies_RiemannInt; try assumption; intros;
    apply (cont1 f)
 | assert (H : b <= a);
    [ auto with real | apply RiemannInt_P1; apply continuity_implies_RiemannInt; try assumption; intros; apply (cont1 f) ] ].
Qed.

Lemma RiemannInt_P33 :
 forall (f:C1_fun) (a b:R) (pr:Riemann_integrable (derive f (diff0 f)) a b),
   a <= b -> RiemannInt pr = f b - f a.
intro f; intros;
 assert
  (H0 : forall x:R, a <= x <= b -> continuity_pt (derive f (diff0 f)) x).
intros; apply (cont1 f).
rewrite (RiemannInt_P20 H (FTC_P1 H H0) pr);
 assert (H1:= RiemannInt_P29 H H0); assert (H2:= RiemannInt_P31 f H);
 elim (antiderivative_Ucte (derive f (diff0 f)) _ _ _ _ H1 H2);
 intros C H3; repeat rewrite H3;
 [ ring
 | split; [ right; reflexivity | assumption ]
 | split; [ assumption | right; reflexivity ] ].
Qed.

Lemma FTC_Riemann :
 forall (f:C1_fun) (a b:R) (pr:Riemann_integrable (derive f (diff0 f)) a b),
   RiemannInt pr = f b - f a.
intro f; intros; case (Rle_dec a b); intro;
 [ apply RiemannInt_P33; assumption
 | assert (H : b <= a);
    [ auto with real
    | assert (H0:= RiemannInt_P1 pr); rewrite (RiemannInt_P8 pr H0);
       rewrite (RiemannInt_P33 _ H0 H); ring ] ].
Qed.

Index
This page has been generated by coqdoc