Library mcertikos.objects.ObjLMM0


Require Import Coqlib.
Require Import Maps.
Require Import AuxStateDataType.
Require Import FlatMemory.
Require Import AbstractDataType.
Require Import Integers.
Require Import Values.
Require Import Constant.
Require Import CalRealInitPTE.
Section OBJ_LMM.

abstraction of container_alloc to LAT
  Function alloc_spec (id: Z) (adt: RData): option (RData × Z) :=
    let c := ZMap.get id (AC adt) in
    match (ikern adt, pg adt, ihost adt, ipt adt, cused c) with
      | (true, true, true, true, true)
        if cusage c <? cquota c then
          let cur := mkContainer (cquota c) (cusage c + 1) (cparent c)
                                 (cchildren c) (cused c) in
          match Lfirst_free (LAT adt) (nps adt) with
            | inleft (exist i _) ⇒
              Some (adt {LAT: ZMap.set i (LATValid true ATNorm nil) (LAT adt)}
                        {pperm: ZMap.set i PGAlloc (pperm adt)}
                        {AC: ZMap.set id cur (AC adt)}, i)
            | _None
          end
        else Some (adt, 0)
      | _None
    end.

  Section INSERT.

    Function ptInsertPTE0_spec (nn vadr padr: Z) (p: PTPerm) (adt: RData): option RData :=
      match (ikern adt, ihost adt, pg adt, ipt adt, pt_Arg nn vadr padr (nps adt)) with
        | (true, true, true, true, true)
          let pt := ZMap.get nn (ptpool adt) in
          let pdi := PDX vadr in
          let pti := PTX vadr in
          match (ZMap.get pdi pt, ZMap.get padr (LAT adt), ZMap.get padr (pperm adt)) with
            | (PDEValid pi pdt, LATValid true ATNorm l, PGAlloc)
              match ZMap.get pti pdt with
                | PTEValid _ _None
                | _
                  let pdt':= ZMap.set pti (PTEValid padr p) pdt in
                  let pt' := ZMap.set pdi (PDEValid pi pdt') pt in
                  if zle_lt 0 (Z.of_nat (length l)) Int.max_unsigned then
                    Some adt {LAT: ZMap.set padr (LATValid true ATNorm (LATO nn pdi pti::l)) (LAT adt)}
                         {ptpool: ZMap.set nn pt' (ptpool adt)}
                  else None
              end
            | _None
          end
        | _None
      end.

    Function ptAllocPDE0_spec (nn vadr: Z) (adt: RData): option (RData × Z) :=
      let pdi := PDX vadr in
      let c := ZMap.get nn (AC adt) in
      match (ikern adt, ihost adt, pg adt, ipt adt, cused c, pt_Arg' nn vadr) with
        | (true, true, true, true, true, true)
          match ZMap.get pdi (ZMap.get nn (ptpool adt)) with
            | PDEUnPresent
              if cusage c <? cquota c then
                let cur := mkContainer (cquota c) (cusage c + 1) (cparent c)
                                       (cchildren c) (cused c) in
                match Lfirst_free (LAT adt) (nps adt) with
                  | inleft (exist pi _) ⇒
                    Some (adt {HP: FlatMem.free_page pi (HP adt)}
                              {LAT: ZMap.set pi (LATValid true ATNorm nil) (LAT adt)}
                              {pperm: ZMap.set pi (PGHide (PGPMap nn pdi)) (pperm adt)}
                              {ptpool: (ZMap.set nn (ZMap.set pdi (PDEValid pi real_init_PTE)
                                                              (ZMap.get nn (ptpool adt))) (ptpool adt))}
                              {AC: ZMap.set nn cur (AC adt)}
                          , pi)
                  | _None
                end
              else Some (adt, 0)
            | _None
          end
        | _None
      end.

primitve: set the n-th page table with virtual address vadr to (padr + perm) The pt insert at this layer, is slightly different from the one at MPTComm. 0th page map has been reserved for the kernel thread, which couldn't be modified after the initialization
    Function ptInsert0_spec (nn vadr padr perm: Z) (adt: RData) : option (RData × Z) :=
      match (ikern adt, ihost adt, ipt adt, pg adt, pt_Arg nn vadr padr (nps adt)) with
        | (true, true, true, true, true)
          match ZtoPerm perm with
            | Some p
              let pt := ZMap.get nn (ptpool adt) in
              let pdi := PDX vadr in
              let pti := PTX vadr in
              match ZMap.get pdi pt with
                | PDEValid pi pdt
                  match ptInsertPTE0_spec nn vadr padr p adt with
                    | Some adt'Some (adt', 0)
                    | _None
                  end
                | PDEUnPresent
                  match ptAllocPDE0_spec nn vadr adt with
                    | Some (adt', v)
                      if zeq v 0 then Some (adt', MagicNumber)
                      else
                        match ptInsertPTE0_spec nn vadr padr p adt' with
                          | Some adt''Some (adt'', v)
                          | _None
                        end
                    | _None
                  end
                | _None
              end
            | _None
          end
        | _None
      end.

  End INSERT.

  Function ptResv_spec (n vadr perm: Z) (adt: RData): option (RData × Z) :=
    match alloc_spec n adt with
      | Some (abd', b)
        if zeq b 0 then Some (adt, MagicNumber)
        else ptInsert0_spec n vadr b perm abd'
      | _None
    end.

  Function ptResv2_spec (n vadr perm n' vadr' perm': Z) (adt: RData): option (RData × Z) :=
    match alloc_spec n adt with
      | Some (abd', b)
        if zeq b 0 then Some (adt, MagicNumber)
        else
          match ptInsert0_spec n vadr b perm abd' with
            | Some (abd'', v)
              if zeq v MagicNumber then Some (abd'', MagicNumber)
              else ptInsert0_spec n' vadr' b perm' abd''
            | _None
          end
      | _None
    end.

End OBJ_LMM.

Require Import liblayers.compat.CompatGenSem.
Require Import liblayers.compat.CompatLayers.
Require Import CommonTactic.
Require Import RefinementTactic.
Require Import PrimSemantics.
Require Import Observation.

Section OBJ_SIM.

  Context `{Hobs: Observation}.

  Context `{data : CompatData(Obs:=Obs) RData}.
  Context `{data0 : CompatData(Obs:=Obs) RData}.

  Context `{Hstencil: Stencil}.
  Context `{Hmem: Mem.MemoryModel}.
  Context `{Hmwd: UseMemWithData mem}.

  Notation HDATAOps := (cdata (cdata_prf := data) RData).
  Notation LDATAOps := (cdata (cdata_prf := data0) RData).

  Context `{rel_prf: CompatRel _ (Obs:=Obs) (memory_model_ops:= memory_model_ops) _
                               (stencil_ops:= stencil_ops) HDATAOps LDATAOps}.

  Section ALLOC_SIM.

    Context {re1: relate_impl_iflags}.
    Context {re2: relate_impl_init}.
    Context {re3: relate_impl_LAT}.
    Context {re4: relate_impl_nps}.
    Context {re5: relate_impl_pperm}.
    Context {re6: relate_impl_ipt}.
    Context {re7: relate_impl_AC}.

    Lemma alloc_exist:
       s habd habd' labd i id f,
        alloc_spec id habd = Some (habd', i)
        → relate_AbData s f habd labd
        → labd', alloc_spec id labd = Some (labd', i)
                          relate_AbData s f habd' labd'.
    Proof.
      unfold alloc_spec; intros.
      exploit relate_impl_iflags_eq; eauto. inversion 1.
      exploit relate_impl_init_eq; eauto; intros.
      exploit relate_impl_LAT_eq; eauto; intros.
      exploit relate_impl_nps_eq; eauto; intros.
      exploit relate_impl_pperm_eq; eauto; intros.
      exploit relate_impl_ipt_eq; eauto; intros.
      exploit relate_impl_AC_eq; eauto; intros.
      revert H. subrewrite.
      subdestruct; inv HQ; refine_split'; trivial.
      apply relate_impl_AC_update.
      apply relate_impl_pperm_update.
      apply relate_impl_LAT_update. assumption.
    Qed.

    Context {mt1: match_impl_pperm}.
    Context {mt2: match_impl_LAT}.
    Context {mt3: match_impl_AC}.

    Lemma alloc_match:
       s d d' m i id f,
        alloc_spec id d = Some (d', i)
        → match_AbData s d m f
        → match_AbData s d' m f.
    Proof.
      unfold alloc_spec; intros. subdestruct; inv H; trivial.
      eapply match_impl_AC_update.
      eapply match_impl_pperm_update.
      eapply match_impl_LAT_update. assumption.
    Qed.

    Context {inv: PreservesInvariants (HD:= data) alloc_spec}.
    Context {inv0: PreservesInvariants (HD:= data0) alloc_spec}.

    Lemma alloc_sim :
       id,
        sim (crel RData RData) (id gensem alloc_spec)
            (id gensem alloc_spec).
    Proof.
      intros. layer_sim_simpl. compatsim_simpl (@match_AbData). intros.
      exploit alloc_exist; eauto 1; intros (labd' & HP & HM).
      match_external_states_simpl.
      eapply alloc_match; eauto.
    Qed.

  End ALLOC_SIM.

  Section PT_INSERT_PTE0_SIM.
    Context {re1: relate_impl_iflags}.
    Context {re3: relate_impl_LAT}.
    Context {re4: relate_impl_nps}.
    Context {re5: relate_impl_pperm}.
    Context {re6: relate_impl_ipt}.
    Context {re7: relate_impl_ptpool}.

    Lemma ptInsertPTE0_exist:
       s habd habd' labd n v pa pe f,
        ptInsertPTE0_spec n v pa pe habd = Some habd'
        → relate_AbData s f habd labd
        → labd', ptInsertPTE0_spec n v pa pe labd = Some labd'
                          relate_AbData s f habd' labd'.
    Proof.
      unfold ptInsertPTE0_spec; intros.
      exploit relate_impl_iflags_eq; eauto. inversion 1.
      exploit relate_impl_nps_eq; eauto.
      exploit relate_impl_ptpool_eq; eauto.
      exploit relate_impl_LAT_eq; eauto.
      exploit relate_impl_ipt_eq; eauto.
      exploit relate_impl_pperm_eq; eauto.
      intros. revert H.
      subrewrite. subdestruct; inv HQ; refine_split'; trivial;
      apply relate_impl_ptpool_update;
      apply relate_impl_LAT_update; assumption.
    Qed.

    Context {mt1: match_impl_ptpool}.
    Context {mt2: match_impl_LAT}.

    Lemma ptInsertPTE0_match:
       s n v pa pe d d' m f,
        ptInsertPTE0_spec n v pa pe d = Some d'
        → match_AbData s d m f
        → match_AbData s d' m f.
    Proof.
      unfold ptInsertPTE0_spec; intros.
      subdestruct; inv H; trivial;
      eapply match_impl_ptpool_update;
      eapply match_impl_LAT_update;
      assumption.
    Qed.

  End PT_INSERT_PTE0_SIM.

  Section PT_ALLOC_PDE0_SIM.

    Context {re1: relate_impl_iflags}.
    Context {re3: relate_impl_LAT}.
    Context {re4: relate_impl_nps}.
    Context {re5: relate_impl_pperm}.
    Context {re6: relate_impl_ipt}.
    Context {re7: relate_impl_ptpool}.
    Context {re8: relate_impl_HP}.
    Context {re9: relate_impl_AC}.

    Lemma ptAllocPDE0_exist:
       s habd habd' labd i n v f,
        ptAllocPDE0_spec n v habd = Some (habd', i)
        → relate_AbData s f habd labd
        → labd', ptAllocPDE0_spec n v labd = Some (labd', i)
                          relate_AbData s f habd' labd'.
    Proof.
      unfold ptAllocPDE0_spec; intros.
      exploit relate_impl_iflags_eq; eauto. inversion 1.
      exploit relate_impl_nps_eq; eauto.
      exploit relate_impl_ptpool_eq; eauto.
      exploit relate_impl_LAT_eq; eauto.
      exploit relate_impl_ipt_eq; eauto.
      exploit relate_impl_pperm_eq; eauto.
      exploit relate_impl_AC_eq; eauto.
      intros. revert H.
      subrewrite. subdestruct; inv HQ;
      refine_split'; trivial.
      apply relate_impl_AC_update.
      apply relate_impl_ptpool_update.
      apply relate_impl_pperm_update.
      apply relate_impl_LAT_update.
      apply relate_impl_HP_update.
      assumption.
      apply FlatMem.free_page_inj'.
      eapply relate_impl_HP_eq; eauto.
    Qed.

    Context {mt1: match_impl_ptpool}.
    Context {mt2: match_impl_LAT}.
    Context {mt3: match_impl_pperm}.
    Context {mt4: match_impl_HP}.
    Context {mt5: match_impl_AC}.

    Lemma ptAllocPDE0_match:
       s n v i d d' m f,
        ptAllocPDE0_spec n v d = Some (d', i)
        → match_AbData s d m f
        → match_AbData s d' m f.
    Proof.
      unfold ptAllocPDE0_spec; intros. subdestruct; inv H; trivial.
      eapply match_impl_AC_update.
      eapply match_impl_ptpool_update.
      eapply match_impl_pperm_update.
      eapply match_impl_LAT_update.
      eapply match_impl_HP_update.
      assumption.
    Qed.


  End PT_ALLOC_PDE0_SIM.

  Section PT_INSERT0_SIM.

    Context {re1: relate_impl_iflags}.
    Context {re2: relate_impl_ptpool}.
    Context {re3: relate_impl_pperm}.
    Context {re4: relate_impl_nps}.
    Context {re5: relate_impl_LAT}.
    Context {re6: relate_impl_ipt}.
    Context {re7: relate_impl_HP}.
    Context {re8: relate_impl_AC}.

    Lemma ptInsert0_exist:
       s habd habd' labd i n v pa pe f,
        ptInsert0_spec n v pa pe habd = Some (habd', i)
        → relate_AbData s f habd labd
        → labd', ptInsert0_spec n v pa pe labd = Some (labd', i)
                          relate_AbData s f habd' labd'.
    Proof.
      unfold ptInsert0_spec; intros.
      exploit relate_impl_iflags_eq; eauto. inversion 1.
      exploit relate_impl_nps_eq; eauto; intros.
      exploit relate_impl_ipt_eq; eauto; intros.
      exploit relate_impl_ptpool_eq; eauto; intros.
      revert H; subrewrite; subdestruct.
      - exploit ptInsertPTE0_exist; eauto.
        intros (labd' & HptInsert0' & Hre).
        subrewrite'.
        inv HQ; refine_split'; trivial.
      - exploit ptAllocPDE0_exist; eauto.
        intros (labd' & HptInsert0' & Hre).
        subrewrite'.
        inv HQ; refine_split'; trivial.
      - exploit ptAllocPDE0_exist; eauto.
        intros (labd' & HptInsert0' & Hre).
        subrewrite'.
        exploit ptInsertPTE0_exist; eauto.
        intros (labd'0 & HptInsert0'' & Hre').
        subrewrite'.
        inv HQ; refine_split'; trivial.
    Qed.

    Context {mt1: match_impl_pperm}.
    Context {mt2: match_impl_LAT}.
    Context {mt3: match_impl_ptpool}.
    Context {mt4: match_impl_HP}.
    Context {mt5: match_impl_AC}.

    Lemma ptInsert0_match:
       s n v pa pe d d' m i f,
        ptInsert0_spec n v pa pe d = Some (d', i)
        → match_AbData s d m f
        → match_AbData s d' m f.
    Proof.
      unfold ptInsert0_spec; intros. subdestruct; inv H; trivial.
      - eapply ptInsertPTE0_match; eauto.
      - eapply ptAllocPDE0_match; eauto.
      - eapply ptInsertPTE0_match; eauto.
        eapply ptAllocPDE0_match; eauto.
    Qed.

    Context {inv: PreservesInvariants (HD:= data) ptInsert0_spec}.
    Context {inv0: PreservesInvariants (HD:= data0) ptInsert0_spec}.

    Lemma ptInsert0_sim :
       id,
        sim (crel RData RData) (id gensem ptInsert0_spec)
            (id gensem ptInsert0_spec).
    Proof.
      intros. layer_sim_simpl. compatsim_simpl (@match_AbData). intros.
      exploit ptInsert0_exist; eauto 1; intros (labd' & HP & HM).
      match_external_states_simpl.
      eapply ptInsert0_match; eauto.
    Qed.

  End PT_INSERT0_SIM.

  Section PT_RESV2_SIM.

    Context {re1: relate_impl_iflags}.
    Context {re2: relate_impl_init}.
    Context {re3: relate_impl_LAT}.
    Context {re4: relate_impl_nps}.
    Context {re5: relate_impl_pperm}.
    Context {re6: relate_impl_ipt}.
    Context {re7: relate_impl_ptpool}.
    Context {re8: relate_impl_HP}.
    Context {re9: relate_impl_AC}.

    Lemma ptResv2_exist:
       s habd habd' labd i n v p n' v' p' f,
        ptResv2_spec n v p n' v' p' habd = Some (habd', i)
        → relate_AbData s f habd labd
        → labd', ptResv2_spec n v p n' v' p' labd = Some (labd', i)
                          relate_AbData s f habd' labd'.
    Proof.
      unfold ptResv2_spec; intros.
      subdestruct. destruct p0.
      - exploit alloc_exist; eauto.
        intros (? & ? & ?).
        subrewrite'. inv H. refine_split'; trivial.
      - exploit alloc_exist; eauto.
        intros (? & ? & ?).
        exploit ptInsert0_exist; eauto.
        intros (? & ? & ?).
        subrewrite'. inv H. refine_split'; trivial.
      - exploit alloc_exist; eauto.
        intros (? & ? & ?). revert H.
        exploit ptInsert0_exist; eauto.
        intros (? & ? & ?). intros.
        exploit ptInsert0_exist; eauto.
        intros (? & ? & ?).
        subrewrite'. refine_split'; trivial.
    Qed.

    Context {mt1: match_impl_pperm}.
    Context {mt2: match_impl_LAT}.
    Context {mt3: match_impl_ptpool}.
    Context {mt4: match_impl_HP}.
    Context {mt5: match_impl_AC}.

    Lemma ptResv2_match:
       s d d' m i n v p n' v' p' f,
        ptResv2_spec n v p n' v' p' d = Some (d', i)
        → match_AbData s d m f
        → match_AbData s d' m f.
    Proof.
      unfold ptResv2_spec; intros. subdestruct; inv H; trivial.
      - eapply ptInsert0_match; eauto.
        eapply alloc_match; eauto.
      - eapply ptInsert0_match; eauto.
        eapply ptInsert0_match; eauto.
        eapply alloc_match; eauto.
    Qed.

    Context {inv: PreservesInvariants (HD:= data) ptResv2_spec}.
    Context {inv0: PreservesInvariants (HD:= data0) ptResv2_spec}.

    Lemma ptResv2_sim :
       id,
        sim (crel RData RData) (id gensem ptResv2_spec)
            (id gensem ptResv2_spec).
    Proof.
      intros. layer_sim_simpl. compatsim_simpl (@match_AbData). intros.
      exploit ptResv2_exist; eauto 1; intros (labd' & HP & HM).
      match_external_states_simpl.
      eapply ptResv2_match; eauto.
    Qed.

  End PT_RESV2_SIM.

  Section PT_RESV_SIM.

    Context {re1: relate_impl_iflags}.
    Context {re2: relate_impl_init}.
    Context {re3: relate_impl_LAT}.
    Context {re4: relate_impl_nps}.
    Context {re5: relate_impl_pperm}.
    Context {re6: relate_impl_ipt}.
    Context {re7: relate_impl_ptpool}.
    Context {re8: relate_impl_HP}.
    Context {re9: relate_impl_AC}.

    Lemma ptResv_exist:
       s habd habd' labd i n v p f,
        ptResv_spec n v p habd = Some (habd', i)
        → relate_AbData s f habd labd
        → labd', ptResv_spec n v p labd = Some (labd', i)
                          relate_AbData s f habd' labd'.
    Proof.
      unfold ptResv_spec; intros.
      subdestruct. destruct p0.
      - exploit alloc_exist; eauto.
        intros (? & ? & ?).
        subrewrite'. inv H. refine_split'; trivial.
      - exploit alloc_exist; eauto.
        intros (? & ? & ?).
        exploit ptInsert0_exist; eauto.
        intros (? & ? & ?).
        subrewrite'. inv H. refine_split'; trivial.
    Qed.

    Context {mt1: match_impl_pperm}.
    Context {mt2: match_impl_LAT}.
    Context {mt3: match_impl_ptpool}.
    Context {mt4: match_impl_HP}.
    Context {mt5: match_impl_AC}.

    Lemma ptResv_match:
       s d d' m i n v p f,
        ptResv_spec n v p d = Some (d', i)
        → match_AbData s d m f
        → match_AbData s d' m f.
    Proof.
      unfold ptResv_spec; intros. subdestruct; inv H; trivial.
      eapply ptInsert0_match; eauto.
      eapply alloc_match; eauto.
    Qed.

    Context {inv: PreservesInvariants (HD:= data) ptResv_spec}.
    Context {inv0: PreservesInvariants (HD:= data0) ptResv_spec}.

    Lemma ptResv_sim :
       id,
        sim (crel RData RData) (id gensem ptResv_spec)
            (id gensem ptResv_spec).
    Proof.
      intros. layer_sim_simpl. compatsim_simpl (@match_AbData). intros.
      exploit ptResv_exist; eauto 1; intros (labd' & HP & HM).
      match_external_states_simpl.
      eapply ptResv_match; eauto.
    Qed.

  End PT_RESV_SIM.

End OBJ_SIM.