Library mcertikos.proc.QueueIntroGenDef


This file provide the contextual refinement proof between PThreadInit layer and PQueueIntro layer
Require Export Coqlib.
Require Export Errors.
Require Export AST.
Require Export Integers.
Require Export Floats.
Require Export Op.
Require Export Asm.
Require Export Events.
Require Export Globalenvs.
Require Export Smallstep.
Require Export Values.
Require Export Memory.
Require Export Maps.
Require Export CommonTactic.
Require Export AuxLemma.
Require Export FlatMemory.
Require Export AuxStateDataType.
Require Export Constant.
Require Export GlobIdent.
Require Export RealParams.
Require Export LoadStoreSem2.
Require Export AsmImplLemma.
Require Export GenSem.
Require Export RefinementTactic.
Require Export PrimSemantics.
Require Export XOmega.

Require Export liblayers.logic.PTreeModules.
Require Export liblayers.logic.LayerLogicImpl.
Require Export liblayers.compcertx.Stencil.
Require Export liblayers.compcertx.MakeProgram.
Require Export liblayers.compat.CompatLayers.
Require Export liblayers.compat.CompatGenSem.
Require Export compcert.cfrontend.Ctypes.

Require Export LayerCalculusLemma.
Require Export AbstractDataType.


Require Export PQueueIntro.

Open Scope string_scope.
Open Scope error_monad_scope.
Open Scope Z_scope.

Notation HDATA := RData.
Notation LDATA := RData.

Notation HDATAOps := (cdata (cdata_ops := pthreadinit_data_ops) HDATA).
Notation LDATAOps := (cdata (cdata_ops := pthreadinit_data_ops) LDATA).

Definition of the refinement relation

Section Refinement.

  Context `{real_params: RealParams}.

  Section WITHMEM.

    Context `{Hstencil: Stencil}.
    Context `{Hmem: Mem.MemoryModel}.
    Context `{Hmwd: UseMemWithData mem}.

Definition the refinement relation: relate_RData + match_RData

    Section REFINEMENT_REL.

Relation between the thread control block pool and the underline memory
        Inductive match_TDQ: TDQueuevalvalProp :=
        | MATCH_TDQUNDEF:
             v1 v2, match_TDQ TDQUndef v1 v2
        | MATCH_TDQVALID:
             v1 v2,
              match_TDQ (TDQValid (Int.unsigned v1) (Int.unsigned v2)) (Vint v1) (Vint v2).

        Inductive match_TDQPool: stencilTDQueuePoolmemmeminjProp :=
        | MATCH_TDQPOOL:
             tdqp m b f s,
              ( ofs,
                 0 ofs num_chan
                 ( v1 v2,
                    Mem.load Mint32 m b (ofs × 8) = Some v1
                    Mem.valid_access m Mint32 b (ofs × 8) Writable
                    Mem.load Mint32 m b (ofs × 8 + 4) = Some v2
                    Mem.valid_access m Mint32 b (ofs × 8 + 4) Writable
                    match_TDQ (ZMap.get ofs tdqp) v1 v2))
              → find_symbol s TDQPool_LOC = Some b
              → match_TDQPool s tdqp m f.

Relation between the new raw data at the higher layer with the mememory at lower layer
        Inductive match_RData: stencilHDATAmemmeminjProp :=
        | MATCH_RDATA:
             hadt m f s,
              match_TDQPool s (tdq hadt) m f
              → match_RData s hadt m f.

Relation between raw data at two layers
        Record relate_RData (f: meminj) (hadt: HDATA) (ladt: LDATA) :=
          mkrelate_RData {
              flatmem_re: FlatMem.flatmem_inj (HP hadt) (HP ladt);
              vmxinfo_re: vmxinfo hadt = vmxinfo ladt;
              devout_re: devout hadt = devout ladt;
              CR3_re: CR3 hadt = CR3 ladt;
              ikern_re: ikern hadt = ikern ladt;
              pg_re: pg hadt = pg ladt;
              ihost_re: ihost hadt = ihost ladt;
              AC_re: AC hadt = AC ladt;
              ti_fst_re: (fst (ti hadt)) = (fst (ti ladt));
              ti_snd_re: val_inject f (snd (ti hadt)) (snd (ti ladt));
              LAT_re: LAT hadt = LAT ladt;
              nps_re: nps hadt = nps ladt;
              init_re: init hadt = init ladt;

              pperm_re: pperm hadt = pperm ladt;
              PT_re: PT hadt = PT ladt;
              ptp_re: ptpool hadt = ptpool ladt;
              idpde_re: idpde hadt = idpde ladt;
              ipt_re: ipt hadt = ipt ladt;
              smspool_re: smspool hadt = smspool ladt;

              kctxt_re: kctxt_inj f num_proc (kctxt hadt) (kctxt ladt);
              tcb_re: tcb hadt = tcb ladt
            }.

        Global Instance rel_ops: CompatRelOps HDATAOps LDATAOps :=
          {
            relate_AbData s f d1 d2 := relate_RData f d1 d2;
            match_AbData s d1 m f := match_RData s d1 m f;
            new_glbl := TDQPool_LOC :: nil
          }.

    End REFINEMENT_REL.

Properties of relations

    Section Rel_Property.

      Lemma inject_match_correct:
         s d1 m2 f m2' j,
          match_RData s d1 m2 f
          Mem.inject j m2 m2'
          inject_incr (Mem.flat_inj (genv_next s)) j
          match_RData s d1 m2' (compose_meminj f j).
      Proof.
        inversion 1; subst; intros.
        inv H0.
        assert (HFB0: j b = Some (b, 0)).
        {
          eapply stencil_find_symbol_inject'; eauto.
        }
        econstructor; eauto; intros.
        econstructor; eauto; intros.
        specialize (H3 _ H0).
        destruct H3 as [v1[v2[HL1[HV1[HL2[HV2 HM]]]]]].
        specialize (Mem.load_inject _ _ _ _ _ _ _ _ _ H1 HL1 HFB0).
        specialize (Mem.load_inject _ _ _ _ _ _ _ _ _ H1 HL2 HFB0).
        repeat rewrite Z.add_0_r.
        intros [v1'[HLD1' HV1']].
        intros [v2'[HLD2' HV2']].
        refine_split'; eauto.
        specialize(Mem.valid_access_inject _ _ _ _ _ _ _ _ _ HFB0 H1 HV1).
        rewrite Z.add_0_r; trivial.
        specialize(Mem.valid_access_inject _ _ _ _ _ _ _ _ _ HFB0 H1 HV2).
        rewrite Z.add_0_r; trivial.
        inv HM. constructor.
        inv HV1'. inv HV2'. constructor; auto.
      Qed.

      Lemma store_match_correct:
         s abd m0 m0' f b2 v v' chunk,
          match_RData s abd m0 f
          ( i b,
             In i new_glbl
             find_symbol s i = Some bb b2) →
          Mem.store chunk m0 b2 v v' = Some m0'
          match_RData s abd m0' f.
      Proof.
        intros. inv H. inv H2.
        econstructor; eauto.
        econstructor; eauto.
        intros. specialize (H _ H2).
        destruct H as [v1[v2[HL1[HV1[HL2[HV2 HM]]]]]].
        eapply H0 in H3; simpl; eauto.
        repeat rewrite (Mem.load_store_other _ _ _ _ _ _ H1); auto.
        refine_split'; eauto;
        eapply Mem.store_valid_access_1; eauto.
      Qed.

      Lemma storebytes_match_correct:
         s abd m0 m0' f b2 v v',
          match_RData s abd m0 f
          ( i b,
             In i new_glbl
             find_symbol s i = Some bb b2) →
          Mem.storebytes m0 b2 v v' = Some m0'
          match_RData s abd m0' f.
      Proof.
        intros. inv H. inv H2.
        econstructor; eauto.
        econstructor; eauto.
        intros. specialize (H _ H2).
        destruct H as [v1[v2[HL1[HV1[HL2[HV2 HM]]]]]].
        eapply H0 in H3; simpl; eauto.
        repeat rewrite (Mem.load_storebytes_other _ _ _ _ _ H1); eauto.
        refine_split'; eauto;
        eapply Mem.storebytes_valid_access_1; eauto.
      Qed.

      Lemma free_match_correct:
         s abd m0 m0' f ofs sz b2,
          match_RData s abd m0 f
          ( i b,
             In i new_glbl
             find_symbol s i = Some bb b2) →
          Mem.free m0 b2 ofs sz = Some m0'
          match_RData s abd m0' f.
      Proof.
        intros; inv H; inv H2.
        econstructor; eauto.
        econstructor; eauto.
        intros. specialize (H _ H2).
        destruct H as [v1[v2[HL1[HV1[HL2[HV2 HM]]]]]].
        eapply H0 in H3; simpl; eauto.
        repeat rewrite (Mem.load_free _ _ _ _ _ H1); auto.
        refine_split'; eauto;
        eapply Mem.valid_access_free_1; eauto.
      Qed.

      Lemma alloc_match_correct:
         s abd m'0 m'1 f f' ofs sz b0 b'1,
          match_RData s abd m'0 f
          Mem.alloc m'0 ofs sz = (m'1, b'1)
          f' b0 = Some (b'1, 0%Z)
          ( b : block, b b0f' b = f b) →
          inject_incr f f'
          ( i b,
             In i new_glbl
             find_symbol s i = Some bb b0) →
          match_RData s abd m'1 f'.
      Proof.
        intros. rename H1 into HF1, H2 into HB. inv H; inv H1.
        econstructor; eauto.
        econstructor; eauto.
        intros. specialize (H _ H1).
        destruct H as [v1[v2[HL1[HV1[HL2[HV2 HM]]]]]].
        refine_split'; eauto;
        try (apply (Mem.load_alloc_other _ _ _ _ _ H0));
        try (eapply Mem.valid_access_alloc_other); eauto.
      Qed.

Prove that after taking one step, the refinement relation still holds
      Lemma relate_incr:
         abd abd' f f',
          relate_RData f abd abd'
          → inject_incr f f'
          → relate_RData f' abd abd'.
      Proof.
        inversion 1; subst; intros; inv H; constructor; eauto.
        - eapply kctxt_inj_incr; eauto.
      Qed.

      Lemma relate_kernel_mode:
         abd abd' f,
          relate_RData f abd abd'
          → (kernel_mode abd kernel_mode abd').
      Proof.
        inversion 1; simpl; split; congruence.
      Qed.

      Lemma relate_observe:
         p abd abd' f,
          relate_RData f abd abd'
          observe p abd = observe p abd'.
      Proof.
        inversion 1; simpl; unfold ObservationImpl.observe; congruence.
      Qed.

      Global Instance rel_prf: CompatRel HDATAOps LDATAOps.
      Proof.
        constructor.
        - apply inject_match_correct.
        - apply store_match_correct.
        - apply alloc_match_correct.
        - apply free_match_correct.
        - apply storebytes_match_correct.
        - intros. eapply relate_incr; eauto.
        - intros; eapply relate_kernel_mode; eauto.
        - intros; eapply relate_observe; eauto.
      Qed.

    End Rel_Property.

  End WITHMEM.

End Refinement.