Library mcertikos.proc.PQueueInit


This file defines the abstract data and the primitives for the PQueueInit layer, which will introduce abstraction of kernel context
Require Import Coqlib.
Require Import Maps.
Require Import ASTExtra.
Require Import Integers.
Require Import Floats.
Require Import Values.
Require Import Memory.
Require Import Events.
Require Import Stacklayout.
Require Import Globalenvs.
Require Import AsmX.
Require Import Smallstep.
Require Import AuxStateDataType.
Require Import Constant.
Require Import GlobIdent.
Require Import FlatMemory.
Require Import CommonTactic.
Require Import AuxLemma.
Require Import RealParams.
Require Import PrimSemantics.
Require Import LAsm.
Require Import LoadStoreSem2.
Require Import XOmega.
Require Import ObservationImpl.

Require Import liblayers.logic.PTreeModules.
Require Import liblayers.logic.LayerLogicImpl.
Require Import liblayers.compat.CompatLayers.
Require Import liblayers.compat.CompatGenSem.

Require Import CalRealPTPool.
Require Import CalRealPT.
Require Import CalRealIDPDE.
Require Import CalRealInitPTE.
Require Import CalRealSMSPool.
Require Import CalRealProcModule.

Require Import INVLemmaContainer.
Require Import INVLemmaMemory.
Require Import INVLemmaThread.

Require Import AbstractDataType.

Require Export ObjCPU.
Require Export ObjFlatMem.
Require Export ObjContainer.
Require Export ObjVMM.
Require Export ObjLMM.
Require Export ObjShareMem.
Require Export ObjThread.
Require Export ObjQueue.

Abstract Data and Primitives at this layer

Section WITHMEM.

  Local Open Scope Z_scope.

  Context `{real_params: RealParams}.

**Definition of the invariants at this layer 0th page map is reserved for the kernel thread
  Record high_level_invariant (abd: RData) :=
    mkInvariant {
        valid_nps: pg abd = truekern_low nps abd maxpage;
        valid_AT_kern: pg abd = trueLAT_kern (LAT abd) (nps abd);
        valid_AT_usr: pg abd = trueLAT_usr (LAT abd) (nps abd);
        valid_kern: ipt abd = falsepg abd = true;
        valid_iptt: ipt abd = trueikern abd = true;
        valid_iptf: ikern abd = falseipt abd = false;
        valid_ihost: ihost abd = falsepg abd = true ikern abd = true;
        valid_container: Container_valid (AC abd);
        valid_pperm_ppage: Lconsistent_ppage (LAT abd) (pperm abd) (nps abd);
        init_pperm: pg abd = false(pperm abd) = ZMap.init PGUndef;
        valid_PMap: pg abd = true
                    ( i, 0 i < num_proc
                               PMap_valid (ZMap.get i (ptpool abd)));
        
        valid_PT_kern: pg abd = trueipt abd = true(PT abd) = 0;
        valid_PMap_kern: pg abd = truePMap_kern (ZMap.get 0 (ptpool abd));
        valid_PT: pg abd = true → 0 PT abd < num_proc;
        valid_dirty: dirty_ppage (pperm abd) (HP abd);

        valid_idpde: pg abd = trueIDPDE_init (idpde abd);
        valid_pperm_pmap: consistent_pmap (ptpool abd) (pperm abd) (LAT abd) (nps abd);
        valid_pmap_domain: consistent_pmap_domain (ptpool abd) (pperm abd) (LAT abd) (nps abd);
        valid_lat_domain: consistent_lat_domain (ptpool abd) (LAT abd) (nps abd);

        valid_root: pg abd = truecused (ZMap.get 0 (AC abd)) = true;

        valid_TCB: pg abd = trueTCBCorrect_range (tcb abd);
        valid_TDQ: pg abd = trueTDQCorrect_range (tdq abd)
      }.

Definition of the abstract state ops

  Global Instance pqueueinit_data_ops : CompatDataOps RData :=
    {
      empty_data := init_adt;
      high_level_invariant := high_level_invariant;
      low_level_invariant := low_level_invariant;
      kernel_mode adt := ikern adt = true ihost adt = true;
      observe := ObservationImpl.observe
    }.

Proofs that the initial abstract_data should satisfy the invariants

  Section Property_Abstract_Data.

    Lemma empty_data_high_level_invariant:
      high_level_invariant init_adt.
    Proof.
      constructor; simpl; intros; auto; try inv H.
      - apply empty_container_valid.
      - eapply Lconsistent_ppage_init.
      - eapply dirty_ppage_init.
      - eapply consistent_pmap_init.
      - eapply consistent_pmap_domain_init.
      - eapply consistent_lat_domain_init.
    Qed.

Definition of the abstract state

    Global Instance pqueueinit_data_prf : CompatData RData.
    Proof.
      constructor.
      - apply low_level_invariant_incr.
      - apply empty_data_low_level_invariant.
      - apply empty_data_high_level_invariant.
    Qed.

  End Property_Abstract_Data.

Specifications of Primitives

  Section Prim_Define.

primitve: enqueue
    Function enqueue_spec (n i: Z) (adt: RData): option RData :=
      match (ikern adt, pg adt, ihost adt, ipt adt) with
        | (true, true, true, true)
          if Queue_arg n i then
            match (ZMap.get n (tdq adt), ZMap.get i (tcb adt)) with
              | (TDQValid h t, TCBValid st _ _)
                if zeq t num_proc then
                  Some adt {tcb: ZMap.set i (TCBValid st num_proc num_proc) (tcb adt)}
                       {tdq: ZMap.set n (TDQValid i i) (tdq adt)}
                else
                  match (ZMap.get t (tcb adt)) with
                    | TCBValid st' prev' _
                      let tcb':= ZMap.set t (TCBValid st' prev' i) (tcb adt) in
                      Some adt {tcb: ZMap.set i (TCBValid st t num_proc) tcb'}
                           {tdq: ZMap.set n (TDQValid h i) (tdq adt)}
                    | _None
                  end
              | _None
            end
          else None
        | _None
      end.

primitve: dequeue
    Function dequeue_spec (n: Z) (adt: RData): option (RData× Z) :=
      match (ikern adt, pg adt, ihost adt, ipt adt) with
        | (true, true, true, true)
          if zle_le 0 n num_chan then
            match (ZMap.get n (tdq adt)) with
              | TDQValid h t
                if zeq h num_proc then Some (adt, num_proc)
                else
                  match (ZMap.get h (tcb adt)) with
                    | TCBValid st _ next
                      if zeq next num_proc then
                        Some (adt {tdq: ZMap.set n (TDQValid num_proc num_proc) (tdq adt)}, h)
                      else
                        match (ZMap.get next (tcb adt)) with
                          | TCBValid st' _ next'
                            Some (adt {tcb: ZMap.set next (TCBValid st' num_proc next') (tcb adt)}
                                      {tdq: ZMap.set n (TDQValid next t) (tdq adt)}, h)
                          | _None
                        end
                    | _None
                  end
              | _None
            end
          else None
        | _None
      end.

primitive: initialize the allocation table, set up the paging mechanism, and initialize the page table pool
    Function tdqueue_init_spec (mbi_adr:Z) (adt: RData): option RData :=
      match (init adt, pg adt, ikern adt, ihost adt, ipt adt) with
        | (false, false, true, true, true)
        Some adt {vmxinfo: real_vmxinfo} {pg: true} {LAT: real_LAT (LAT adt)} {nps: real_nps}
             {AC: real_AC} {init: true} {PT: 0} {ptpool: real_pt (ptpool adt)}
             {idpde: real_idpde (idpde adt)}
             {smspool: real_smspool (smspool adt)}
             {tcb: real_tcb (tcb adt)} {tdq: real_tdq (tdq adt)}
        | _None
      end.

  End Prim_Define.

  Context `{Hstencil: Stencil}.
  Context `{Hmem: Mem.MemoryModel}.
  Context `{Hmwd: UseMemWithData mem}.

Proofs that the primitives satisfies the invariants at this layer

  Section INV.

    Section ALLOC.

      Lemma alloc_high_level_inv:
         d d' i n,
          alloc_spec i d = Some (d', n)
          high_level_invariant d
          high_level_invariant d'.
      Proof.
        intros. functional inversion H; subst; eauto.
        inv H0. constructor; simpl; eauto.
        - intros; eapply LAT_kern_norm; eauto. eapply _x.
        - intros; eapply LAT_usr_norm; eauto.
        - eapply alloc_container_valid'; eauto.
        - eapply Lconsistent_ppage_norm_alloc; eauto.
        - intros; congruence.
        - eapply dirty_ppage_gso_alloc; eauto.
        - eapply consistent_pmap_gso_at_false; eauto. apply _x.
        - eapply consistent_pmap_domain_gso_at_false; eauto. apply _x.
        - eapply consistent_lat_domain_gss_nil; eauto.
        - zmap_solve.
      Qed.

      Lemma alloc_low_level_inv:
         d d' i n n',
          alloc_spec i d = Some (d', n)
          low_level_invariant n' d
          low_level_invariant n' d'.
      Proof.
        intros. functional inversion H; subst; eauto.
        inv H0. constructor; eauto.
      Qed.

      Lemma alloc_kernel_mode:
         d d' i n,
          alloc_spec i d = Some (d', n)
          kernel_mode d
          kernel_mode d'.
      Proof.
        intros. functional inversion H; subst; eauto.
      Qed.

      Global Instance alloc_inv: PreservesInvariants alloc_spec.
      Proof.
        preserves_invariants_simpl'.
        - eapply alloc_low_level_inv; eassumption.
        - eapply alloc_high_level_inv; eassumption.
        - eapply alloc_kernel_mode; eassumption.
      Qed.

    End ALLOC.

    Global Instance pfree_inv: PreservesInvariants pfree_spec.
    Proof.
      preserves_invariants_simpl low_level_invariant high_level_invariant; eauto 2.
      - intros; eapply LAT_kern_norm; eauto.
      - intros; eapply LAT_usr_norm; eauto.
      - eapply Lconsistent_ppage_norm_undef; eauto.
      - eapply dirty_ppage_gso_undef; eauto.
      - eapply consistent_pmap_gso_pperm_alloc; eauto.
      - eapply consistent_pmap_domain_gso_at_0; eauto.
      - eapply consistent_lat_domain_gss_nil; eauto.
    Qed.

    Global Instance trapin_inv: PrimInvariants trapin_spec.
    Proof.
      PrimInvariants_simpl H H0.
    Qed.

    Global Instance trapout_inv: PrimInvariants trapout_spec.
    Proof.
      PrimInvariants_simpl H H0.
    Qed.

    Global Instance hostin_inv: PrimInvariants hostin_spec.
    Proof.
      PrimInvariants_simpl H H0.
    Qed.

    Global Instance hostout_inv: PrimInvariants hostout_spec.
    Proof.
      PrimInvariants_simpl H H0.
    Qed.

    Global Instance ptin_inv: PrimInvariants ptin_spec.
    Proof.
      PrimInvariants_simpl H H0.
    Qed.

    Global Instance ptout_inv: PrimInvariants ptout_spec.
    Proof.
      PrimInvariants_simpl H H0.
    Qed.

    Global Instance fstore_inv: PreservesInvariants fstore_spec.
    Proof.
      split; intros; inv_generic_sem H; inv H0; functional inversion H2.
      - functional inversion H. split; trivial.
      - functional inversion H.
        split; subst; simpl;
        try (eapply dirty_ppage_store_unmaped; try reflexivity; try eassumption); trivial.
      - functional inversion H0.
        split; simpl; try assumption.
    Qed.

    Global Instance setPT_inv: PreservesInvariants setPT_spec.
    Proof.
      preserves_invariants_simpl low_level_invariant high_level_invariant; eauto 2.
    Qed.

    Section PTINSERT.

      Section PTINSERT_PTE.

        Lemma ptInsertPTE_high_level_inv:
           d d' n vadr padr p,
            ptInsertPTE0_spec n vadr padr p d = Some d'
            high_level_invariant d
            high_level_invariant d'.
        Proof.
          intros. functional inversion H; subst; eauto.
          inv H0; constructor_gso_simpl_tac; intros.
          - eapply LAT_kern_norm; eauto.
          - eapply LAT_usr_norm; eauto.
          - eapply Lconsistent_ppage_norm; eassumption.
          - eapply PMap_valid_gso_valid; eauto.
          - functional inversion H2. functional inversion H1.
            eapply PMap_kern_gso; eauto.
          - functional inversion H2. functional inversion H0.
            eapply consistent_pmap_ptp_same; try eassumption.
            eapply consistent_pmap_gso_pperm_alloc'; eassumption.
          - functional inversion H2.
            eapply consistent_pmap_domain_append; eauto.
            destruct (ZMap.get pti pdt); try contradiction;
            red; intros (v0 & p0 & He); contra_inv.
          - eapply consistent_lat_domain_gss_append; eauto.
            subst pti; destruct (ZMap.get (PTX vadr) pdt); try contradiction;
            red; intros (v0 & p0 & He); contra_inv.
        Qed.

        Lemma ptInsertPTE_low_level_inv:
           d d' n vadr padr p n',
            ptInsertPTE0_spec n vadr padr p d = Some d'
            low_level_invariant n' d
            low_level_invariant n' d'.
        Proof.
          intros. functional inversion H; subst; eauto.
          inv H0. constructor; eauto.
        Qed.

        Lemma ptInsertPTE_kernel_mode:
           d d' n vadr padr p,
            ptInsertPTE0_spec n vadr padr p d = Some d'
            kernel_mode d
            kernel_mode d'.
        Proof.
          intros. functional inversion H; subst; eauto.
        Qed.

      End PTINSERT_PTE.

      Section PTALLOCPDE.

        Lemma ptAllocPDE_high_level_inv:
           d d' n vadr v,
            ptAllocPDE0_spec n vadr d = Some (d', v)
            high_level_invariant d
            high_level_invariant d'.
        Proof.
          intros. functional inversion H; subst; eauto.
          inv H0; constructor_gso_simpl_tac; intros.
          - eapply LAT_kern_norm; eauto. eapply _x.
          - eapply LAT_usr_norm; eauto.
          - eapply alloc_container_valid'; eauto.
          - apply Lconsistent_ppage_norm_hide; try assumption.
          - congruence.
          - eapply PMap_valid_gso_pde_unp; eauto.
            eapply real_init_PTE_defined.
          - functional inversion H3.
            eapply PMap_kern_gso; eauto.
          - eapply dirty_ppage_gss; eauto.
          - eapply consistent_pmap_ptp_gss; eauto; apply _x.
          - eapply consistent_pmap_domain_gso_at_false; eauto; try apply _x.
            eapply consistent_pmap_domain_ptp_unp; eauto.
            apply real_init_PTE_unp.
          - apply consistent_lat_domain_gss_nil; eauto.
            apply consistent_lat_domain_gso_p; eauto.
          - zmap_solve.
        Qed.

        Lemma ptAllocPDE_low_level_inv:
           d d' n vadr v n',
            ptAllocPDE0_spec n vadr d = Some (d', v)
            low_level_invariant n' d
            low_level_invariant n' d'.
        Proof.
          intros. functional inversion H; subst; eauto.
          inv H0. constructor; eauto.
        Qed.

        Lemma ptAllocPDE_kernel_mode:
           d d' n vadr v,
            ptAllocPDE0_spec n vadr d = Some (d', v)
            kernel_mode d
            kernel_mode d'.
        Proof.
          intros. functional inversion H; subst; eauto.
        Qed.

      End PTALLOCPDE.

      Lemma ptInsert_high_level_inv:
         d d' n vadr padr p v,
          ptInsert0_spec n vadr padr p d = Some (d', v)
          high_level_invariant d
          high_level_invariant d'.
      Proof.
        intros. functional inversion H; subst; eauto.
        - eapply ptInsertPTE_high_level_inv; eassumption.
        - eapply ptAllocPDE_high_level_inv; eassumption.
        - eapply ptInsertPTE_high_level_inv; try eassumption.
          eapply ptAllocPDE_high_level_inv; eassumption.
      Qed.

      Lemma ptInsert_low_level_inv:
         d d' n vadr padr p n' v,
          ptInsert0_spec n vadr padr p d = Some (d', v)
          low_level_invariant n' d
          low_level_invariant n' d'.
      Proof.
        intros. functional inversion H; subst; eauto.
        - eapply ptInsertPTE_low_level_inv; eassumption.
        - eapply ptAllocPDE_low_level_inv; eassumption.
        - eapply ptInsertPTE_low_level_inv; try eassumption.
          eapply ptAllocPDE_low_level_inv; eassumption.
      Qed.

      Lemma ptInsert_kernel_mode:
         d d' n vadr padr p v,
          ptInsert0_spec n vadr padr p d = Some (d', v)
          kernel_mode d
          kernel_mode d'.
      Proof.
        intros. functional inversion H; subst; eauto.
        - eapply ptInsertPTE_kernel_mode; eassumption.
        - eapply ptAllocPDE_kernel_mode; eassumption.
        - eapply ptInsertPTE_kernel_mode; try eassumption.
          eapply ptAllocPDE_kernel_mode; eassumption.
      Qed.

    End PTINSERT.

    Section PTRESV.

      Lemma ptResv_high_level_inv:
         d d' n vadr p v,
          ptResv_spec n vadr p d = Some (d', v)
          high_level_invariant d
          high_level_invariant d'.
      Proof.
        intros. functional inversion H; subst; eauto.
        eapply ptInsert_high_level_inv; try eassumption.
        eapply alloc_high_level_inv; eassumption.
      Qed.

      Lemma ptResv_low_level_inv:
         d d' n vadr p n' v,
          ptResv_spec n vadr p d = Some (d', v)
          low_level_invariant n' d
          low_level_invariant n' d'.
      Proof.
        intros. functional inversion H; subst; eauto.
        eapply ptInsert_low_level_inv; try eassumption.
        eapply alloc_low_level_inv; eassumption.
      Qed.

      Lemma ptResv_kernel_mode:
         d d' n vadr p v,
          ptResv_spec n vadr p d = Some (d', v)
          kernel_mode d
          kernel_mode d'.
      Proof.
        intros. functional inversion H; subst; eauto.
        eapply ptInsert_kernel_mode; try eassumption.
        eapply alloc_kernel_mode; eassumption.
      Qed.

      Global Instance ptResv_inv: PreservesInvariants ptResv_spec.
      Proof.
        preserves_invariants_simpl'.
        - eapply ptResv_low_level_inv; eassumption.
        - eapply ptResv_high_level_inv; eassumption.
        - eapply ptResv_kernel_mode; eassumption.
      Qed.

    End PTRESV.

    Section OFFER_SHARE.

      Section PTRESV2.

        Lemma ptResv2_high_level_inv:
           d d' n vadr p n' vadr' p' v,
            ptResv2_spec n vadr p n' vadr' p' d = Some (d', v)
            high_level_invariant d
            high_level_invariant d'.
        Proof.
          intros; functional inversion H; subst; eauto;
          eapply ptInsert_high_level_inv; try eassumption.
          - eapply alloc_high_level_inv; eassumption.
          - eapply ptInsert_high_level_inv; try eassumption.
            eapply alloc_high_level_inv; eassumption.
        Qed.

        Lemma ptResv2_low_level_inv:
           d d' n vadr p n' vadr' p' l v,
            ptResv2_spec n vadr p n' vadr' p' d = Some (d', v)
            low_level_invariant l d
            low_level_invariant l d'.
        Proof.
          intros; functional inversion H; subst; eauto;
          eapply ptInsert_low_level_inv; try eassumption.
          - eapply alloc_low_level_inv; eassumption.
          - eapply ptInsert_low_level_inv; try eassumption.
            eapply alloc_low_level_inv; eassumption.
        Qed.

        Lemma ptResv2_kernel_mode:
           d d' n vadr p n' vadr' p' v,
            ptResv2_spec n vadr p n' vadr' p' d = Some (d', v)
            kernel_mode d
            kernel_mode d'.
        Proof.
          intros; functional inversion H; subst; eauto;
          eapply ptInsert_kernel_mode; try eassumption.
          - eapply alloc_kernel_mode; eassumption.
          - eapply ptInsert_kernel_mode; try eassumption.
            eapply alloc_kernel_mode; eassumption.
        Qed.

      End PTRESV2.

      Global Instance offer_shared_mem_inv:
        PreservesInvariants offer_shared_mem_spec.
      Proof.
        preserves_invariants_simpl';
        functional inversion H2; subst; eauto 2; try (inv H0; constructor; trivial; fail).
        - exploit ptResv2_low_level_inv; eauto.
          intros HP; inv HP. constructor; trivial.
        - exploit ptResv2_low_level_inv; eauto.
          intros HP; inv HP. constructor; trivial.
        - exploit ptResv2_high_level_inv; eauto.
          intros HP; inv HP. constructor; trivial.
        - exploit ptResv2_high_level_inv; eauto.
          intros HP; inv HP. constructor; trivial.
        - exploit ptResv2_kernel_mode; eauto.
        - exploit ptResv2_kernel_mode; eauto.
      Qed.

    End OFFER_SHARE.

    Global Instance shared_mem_status_inv:
      PreservesInvariants shared_mem_status_spec.
    Proof.
      preserves_invariants_simpl low_level_invariant high_level_invariant; eauto 2.
    Qed.

    Global Instance kctxt_switch_inv: KCtxtSwitchInvariants kctxt_switch_spec.
    Proof.
      constructor; intros; functional inversion H.
      - inv H1. constructor; trivial.
        eapply kctxt_inject_neutral_gss_mem; eauto.
      - inv H0. subst. constructor; auto; simpl in *; intros; try congruence.
    Qed.

    Global Instance kctxt_new_inv: DNewInvariants ObjThread.kctxt_new_spec.
    Proof.
      constructor; intros; inv H0;
      unfold ObjThread.kctxt_new_spec in *;
      subdestruct; inv H; simpl; auto.
      -
        constructor; trivial; intros; simpl in ×.
        eapply kctxt_inject_neutral_gss_flatinj'; eauto.
        eapply kctxt_inject_neutral_gss_flatinj; eauto.

      -
        constructor; simpl; eauto 2; try congruence; intros.
        + exploit split_container_valid; eauto.
          eapply container_split_some; eauto.
          auto.
        + unfold update_cusage, update_cchildren; zmap_solve.
    Qed.

    Global Instance set_state_inv: PreservesInvariants set_state_spec.
    Proof.
      preserves_invariants_simpl low_level_invariant high_level_invariant; auto 2.
      eapply TCBCorrect_range_gso; eauto.
    Qed.

    Global Instance clearCR2_inv: PreservesInvariants clearCR2_spec.
    Proof.
      preserves_invariants_simpl low_level_invariant high_level_invariant; auto.
    Qed.


    Global Instance tdqueue_init_inv: PreservesInvariants tdqueue_init_spec.
    Proof.
      preserves_invariants_simpl low_level_invariant high_level_invariant.
      - apply real_nps_range.
      - apply real_lat_kern_valid.
      - apply real_lat_usr_valid.
      - apply real_container_valid.
      - rewrite init_pperm0; try assumption.
        apply Lreal_pperm_valid.
      - eapply real_pt_PMap_valid; eauto.
      - apply real_pt_PMap_kern.
      - omega.
      - assumption.
      - apply real_idpde_init.
      - apply real_pt_consistent_pmap.
      - apply real_pt_consistent_pmap_domain.
      - apply Lreal_at_consistent_lat_domain.
      - apply real_TCB_valid.
      - apply real_TDQ_correct.
    Qed.

    Global Instance enqueue_inv: PreservesInvariants enqueue_spec.
    Proof.
      preserves_invariants_simpl low_level_invariant high_level_invariant; auto 2;
      functional inversion H5.
      - eapply TCBCorrect_range_gss_64; eauto.
      - eapply TDQCorrect_range_gss; eauto 2; omega.
      - assert (HR: 0 t < 64).
        {
          exploit TDQCorrect_range_valid_tail; eauto. omega.
        }
        eapply TCBCorrect_range_gss; eauto; try omega.
        subst tcb'. eapply TCBCorrect_range_gss; eauto; try omega.
        eapply TCBCorrect_range_valid_prev; eauto.
      - eapply TDQCorrect_range_gss_tail; eauto; omega.
    Qed.

    Global Instance dequeue_inv: PreservesInvariants dequeue_spec.
    Proof.
      preserves_invariants_simpl low_level_invariant high_level_invariant; auto 2.
      - eapply TDQCorrect_range_gss_64; eauto.
      - assert (HR: 0 next < 64).
        {
          clear H11. exploit TCBCorrect_range_valid_next; eauto.
          - exploit TDQCorrect_range_valid_head; eauto. omega.
          - omega.
        }
        eapply TCBCorrect_range_gss; eauto; try omega.
        eapply TCBCorrect_range_valid_next; eauto.
      - eapply TDQCorrect_range_gss; eauto.
        + eapply TCBCorrect_range_valid_next; eauto.
          exploit TDQCorrect_range_valid_head; eauto. omega.
        + eapply TDQCorrect_range_valid_tail; eauto.
    Qed.

    Global Instance queue_rmv_inv: PreservesInvariants queue_rmv_spec.
    Proof.
      preserves_invariants_simpl low_level_invariant high_level_invariant; auto 2;
      functional inversion H5.
      - eapply TDQCorrect_range_gss_64; eauto.
      - assert (HR: 0 next < 64).
        {
          exploit TCBCorrect_range_valid_next; eauto. omega.
        }
        eapply TCBCorrect_range_gss; eauto; try omega.
        eapply TCBCorrect_range_valid_next; eauto.
      - eapply TDQCorrect_range_gss; eauto.
        + eapply TCBCorrect_range_valid_next; eauto.
        + eapply TDQCorrect_range_valid_tail; eauto.
      - eapply TCBCorrect_range_gss_next; eauto; try omega.
        exploit TCBCorrect_range_valid_prev; eauto. omega.
      - eapply TDQCorrect_range_gss_tail; eauto.
        eapply TCBCorrect_range_valid_prev; eauto.
      - assert (HR: 0 next 64).
        {
          eapply TCBCorrect_range_valid_next; eauto.
        }
        assert (HR': 0 prev 64).
        {
          eapply TCBCorrect_range_valid_prev; eauto.
        }
        eapply TCBCorrect_range_gss; eauto; try omega.
        + eapply TCBCorrect_range_gss; eauto; try omega.
          eapply TCBCorrect_range_valid_prev; eauto. omega.
        + eapply TCBCorrect_range_valid_next; eauto. omega.
    Qed.

    Global Instance flatmem_copy_inv: PreservesInvariants flatmem_copy_spec.
    Proof.
      preserves_invariants_simpl low_level_invariant high_level_invariant;
      try eapply dirty_ppage_gss_copy; eauto.
    Qed.

    Global Instance device_output_inv: PreservesInvariants device_output_spec.
    Proof.
      preserves_invariants_simpl'' low_level_invariant high_level_invariant; eauto.
    Qed.

  End INV.

  Definition exec_loadex {F V} := exec_loadex2 (F := F) (V := V).

  Definition exec_storeex {F V} := exec_storeex2 (flatmem_store:= flatmem_store) (F := F) (V := V).

  Global Instance flatmem_store_inv: FlatmemStoreInvariant (flatmem_store:= flatmem_store).
  Proof.
    split; inversion 1; intros.
    - functional inversion H0. split; trivial.
    - functional inversion H1.
      split; simpl; try (eapply dirty_ppage_store_unmaped'; try reflexivity; try eassumption); trivial.
  Qed.

  Global Instance trapinfo_set_inv: TrapinfoSetInvariant.
  Proof.
    split; inversion 1; intros; constructor; auto.
  Qed.

Layer Definition

  Definition pqueueinit_fresh : compatlayer (cdata RData) :=
    enqueue gensem enqueue_spec
             dequeue gensem dequeue_spec
             queue_rmv gensem queue_rmv_spec
             tdqueue_init gensem tdqueue_init_spec.

  Definition pqueueinit_passthrough : compatlayer (cdata RData) :=
    fload gensem fload_spec
           fstore gensem fstore_spec
           flatmem_copy gensem flatmem_copy_spec
           vmxinfo_get gensem vmxinfo_get_spec
           device_output gensem device_output_spec
           pfree gensem pfree_spec
           set_pt gensem setPT_spec
           pt_read gensem ptRead_spec
           pt_resv gensem ptResv_spec
           kctxt_new dnew_compatsem ObjThread.kctxt_new_spec
          
           shared_mem_status gensem shared_mem_status_spec
           offer_shared_mem gensem offer_shared_mem_spec
           get_state gensem get_state_spec
           set_state gensem set_state_spec

           pt_in primcall_general_compatsem' ptin_spec (prim_ident:= pt_in)
           pt_out primcall_general_compatsem' ptout_spec (prim_ident:= pt_out)
           clear_cr2 gensem clearCR2_spec
           container_get_nchildren gensem container_get_nchildren_spec
           container_get_quota gensem container_get_quota_spec
           container_get_usage gensem container_get_usage_spec
           container_can_consume gensem container_can_consume_spec
           container_alloc gensem alloc_spec
           trap_in primcall_general_compatsem trapin_spec
           trap_out primcall_general_compatsem trapout_spec
           host_in primcall_general_compatsem hostin_spec
           host_out primcall_general_compatsem hostout_spec
           trap_get primcall_trap_info_get_compatsem trap_info_get_spec
           trap_set primcall_trap_info_ret_compatsem trap_info_ret_spec
           kctxt_switch primcall_kctxt_switch_compatsem kctxt_switch_spec
           accessors {| exec_load := @exec_loadex; exec_store := @exec_storeex |}.

  Definition pqueueinit : compatlayer (cdata RData) := pqueueinit_fresh pqueueinit_passthrough.


End WITHMEM.