Library mcertikos.proc.QueueInitGen


This file provide the contextual refinement proof between PQueueIntro layer and PQueueInit layer
Require Import Coqlib.
Require Import Errors.
Require Import AST.
Require Import Integers.
Require Import Floats.
Require Import Op.
Require Import Asm.
Require Import Events.
Require Import Globalenvs.
Require Import Smallstep.
Require Import Values.
Require Import Memory.
Require Import Maps.
Require Import CommonTactic.
Require Import AuxLemma.
Require Import FlatMemory.
Require Import AuxStateDataType.
Require Import Constant.
Require Import GlobIdent.
Require Import RealParams.
Require Import LoadStoreSem2.
Require Import AsmImplLemma.
Require Import GenSem.
Require Import RefinementTactic.
Require Import PrimSemantics.
Require Import XOmega.

Require Import liblayers.logic.PTreeModules.
Require Import liblayers.logic.LayerLogicImpl.
Require Import liblayers.compcertx.Stencil.
Require Import liblayers.compcertx.MakeProgram.
Require Import liblayers.compat.CompatLayers.
Require Import liblayers.compat.CompatGenSem.
Require Import compcert.cfrontend.Ctypes.
Require Import LayerCalculusLemma.
Require Import AbstractDataType.

Require Import PQueueIntro.
Require Import PQueueInit.
Require Import QueueInitGenSpec.

Definition of the refinement relation

Section Refinement.

  Local Open Scope string_scope.
  Local Open Scope error_monad_scope.
  Local Open Scope Z_scope.

  Context `{real_params: RealParams}.

  Notation HDATA := RData.
  Notation LDATA := RData.

  Notation HDATAOps := (cdata (cdata_ops := pqueueinit_data_ops) HDATA).
  Notation LDATAOps := (cdata (cdata_ops := pthreadinit_data_ops) LDATA).

  Section WITHMEM.

    Context `{Hstencil: Stencil}.
    Context `{Hmem: Mem.MemoryModel}.
    Context `{Hmwd: UseMemWithData mem}.

Relation between raw data at two layers
    Record relate_RData (f: meminj) (hadt: LDATA) (ladt: LDATA) :=
      mkrelate_RData {
          flatmem_re: FlatMem.flatmem_inj (HP hadt) (HP ladt);
          vmxinfo_re: vmxinfo hadt = vmxinfo ladt;
          devout_re: devout hadt = devout ladt;
          CR3_re: CR3 hadt = CR3 ladt;
          ikern_re: ikern hadt = ikern ladt;
          pg_re: pg hadt = pg ladt;
          ihost_re: ihost hadt = ihost ladt;
          AC_re: AC hadt = AC ladt;
          ti_fst_re: (fst (ti hadt)) = (fst (ti ladt));
          ti_snd_re: val_inject f (snd (ti hadt)) (snd (ti ladt));
          LAT_re: LAT hadt = LAT ladt;
          nps_re: nps hadt = nps ladt;
          init_re: init hadt = init ladt;

          pperm_re: pperm hadt = pperm ladt;
          PT_re: PT hadt = PT ladt;
          ptp_re: ptpool hadt = ptpool ladt;
          idpde_re: idpde hadt = idpde ladt;
          ipt_re: ipt hadt = ipt ladt;
          smspool_re: smspool hadt = smspool ladt;

          kctxt_re: kctxt_inj f num_proc (kctxt hadt) (kctxt ladt);
          tcb_re: tcb hadt = tcb ladt;
          tdq_re: tdq hadt = tdq ladt
        }.

    Inductive match_RData: stencilHDATAmemmeminjProp :=
    | MATCH_RDATA: habd m f s, match_RData s habd m f.

    Local Hint Resolve MATCH_RDATA.

    Global Instance rel_ops: CompatRelOps HDATAOps LDATAOps :=
      {
        relate_AbData s f d1 d2 := relate_RData f d1 d2;
        match_AbData s d1 m f := match_RData s d1 m f;
        new_glbl := nil
      }.

Properties of relations

    Section Rel_Property.

Prove that after taking one step, the refinement relation still holds
      Lemma relate_incr:
         abd abd' f f',
          relate_RData f abd abd'
          → inject_incr f f'
          → relate_RData f' abd abd'.
      Proof.
        inversion 1; subst; intros; inv H; constructor; eauto.
        - eapply kctxt_inj_incr; eauto.
      Qed.

      Lemma relate_kernel_mode:
         abd abd' f,
          relate_RData f abd abd'
          → (kernel_mode abd kernel_mode abd').
      Proof.
        inversion 1; simpl; split; congruence.
      Qed.

      Lemma relate_observe:
         p abd abd' f,
          relate_RData f abd abd'
          observe p abd = observe p abd'.
      Proof.
        inversion 1; simpl; unfold ObservationImpl.observe; congruence.
      Qed.

      Global Instance rel_prf: CompatRel HDATAOps LDATAOps.
      Proof.
        constructor; intros; simpl; trivial.
        eapply relate_incr; eauto.
        eapply relate_kernel_mode; eauto.
        eapply relate_observe; eauto.
      Qed.

    End Rel_Property.

Proofs the one-step forward simulations for the low level specifications

    Section OneStep_Forward_Relation.

The low level specifications exist

      Section Exists.

        Lemma tdqueue_init_exist:
           habd habd' labd i f,
            tdqueue_init_spec i habd = ret habd'
            → relate_RData f habd labd
            → labd', PQueueIntro.tdqueue_init_spec i labd = Some labd'
                              relate_RData f habd' labd'
                              kernel_mode labd.
        Proof.
          unfold tdqueue_init_spec, PQueueIntro.tdqueue_init_spec, thread_init_spec.
          intros until f. exist_simpl.
        Qed.

        Lemma queue_rmv_exist:
           habd habd' labd n i f,
            queue_rmv_spec n i habd = ret habd'
            → relate_RData f habd labd
            → labd', queue_rmv_spec n i labd = Some labd'
                              relate_RData f habd' labd'
                              kernel_mode labd.
        Proof.
          unfold queue_rmv_spec. intros until f. exist_simpl.
        Qed.

        Lemma enqueue_exist:
           habd habd' labd n i f,
            enqueue_spec n i habd = ret habd'
            → relate_RData f habd labd
            → high_level_invariant habd
            → labd', PQueueIntro.enqueue_spec n i labd = Some labd'
                              relate_RData f habd' labd'
                              kernel_mode labd.
        Proof.
          unfold enqueue_spec, PQueueIntro.enqueue_spec.
          intros until f.
          intros HP HR HINV. pose proof HR as HR'. inv HR; revert HP.
          specialize (valid_TDQ _ HINV).
          unfold TDQCorrect_range; unfold Queue_arg. simpl.
          subrewrite'; intros HTDQ HQ. subdestruct; inv HQ.
          - refine_split'; eauto. inv HR'.
            econstructor; eauto 1.
          - specialize (HTDQ refl_equal _ a).
            destruct HTDQ as [head0[tail0[HTDQ[_ HTail]]]].
            inv HTDQ. rewrite H0 in Hdestruct5. inv Hdestruct5.
            rewrite zle_lt_true; [|omega].
            refine_split'; eauto. inv HR'.
            econstructor; eauto.
        Qed.

        Lemma dequeue_exist:
           habd habd' labd n i f,
            dequeue_spec n habd = ret (habd', i)
            → relate_RData f habd labd
            → high_level_invariant habd
            → labd', PQueueIntro.dequeue_spec n labd = Some (labd', i)
                              relate_RData f habd' labd'
                              kernel_mode labd.
        Proof.
          unfold dequeue_spec, PQueueIntro.dequeue_spec. intros until f.
          intros HP HR HINV. pose proof HR as HR'. inv HR; revert HP.
          specialize (valid_TDQ _ HINV).
          unfold TDQCorrect_range. unfold Queue_arg.
          subrewrite'; intros HTDQ HQ. subdestruct; inv HQ.
          - refine_split'; eauto.
          - specialize (HTDQ refl_equal _ a).
            destruct HTDQ as [head0[tail0[HTDQ[Head HTail]]]].
            inv HTDQ. rewrite H0 in Hdestruct4. inv Hdestruct4.
            rewrite zle_lt_true; [|omega].
            refine_split'; eauto.
            econstructor; eauto.
          - specialize (HTDQ refl_equal _ a).
            destruct HTDQ as [head0[tail0[HTDQ[Head HTail]]]].
            inv HTDQ. rewrite H0 in Hdestruct4. inv Hdestruct4.
            rewrite zle_lt_true; [|omega].
            refine_split'; eauto.
            econstructor; eauto.
        Qed.

      End Exists.

      Section FRESH_PRIM.

        Lemma queue_rmv_spec_ref:
          compatsim (crel HDATA LDATA) (gensem queue_rmv_spec)
                    queue_rmv_spec_low.
        Proof.
          compatsim_simpl (@match_AbData).
          exploit queue_rmv_exist; eauto 1.
          intros [labd' [HP [HM Hkern]]].
          refine_split; try econstructor; eauto. constructor.
        Qed.

        Lemma tdqueue_init_spec_ref:
          compatsim (crel HDATA LDATA) (gensem tdqueue_init_spec)
                    tdqueue_init_spec_low.
        Proof.
          compatsim_simpl (@match_AbData).
          exploit tdqueue_init_exist; eauto 1.
          intros [labd' [HP [HM Hkern]]].
          refine_split; try econstructor; eauto. constructor.
        Qed.

        Lemma enqueue_spec_ref:
          compatsim (crel HDATA LDATA) (gensem enqueue_spec)
                    enqueue_spec_low.
        Proof.
          compatsim_simpl (@match_AbData).
          exploit enqueue_exist; eauto 1.
          intros [labd' [HP [HM Hkern]]].
          refine_split; try econstructor; eauto. constructor.
        Qed.

        Lemma dequeue_spec_ref:
          compatsim (crel HDATA LDATA) (gensem dequeue_spec)
                    dequeue_spec_low.
        Proof.
          compatsim_simpl (@match_AbData).
          exploit dequeue_exist; eauto 1.
          intros [labd' [HP [HM Hkern]]].
          refine_split; try econstructor; eauto. constructor.
        Qed.

      End FRESH_PRIM.

      Section PASSTHROUGH_RPIM.

        Global Instance: (LoadStoreProp (hflatmem_store:= flatmem_store) (lflatmem_store:= flatmem_store)).
        Proof.
          accessor_prop_tac.
          - eapply flatmem_store_exists; eauto.
        Qed.

        Lemma passthrough_correct:
          sim (crel HDATA LDATA) pqueueinit_passthrough pqueueintro.
        Proof.
          sim_oplus.
          - apply fload_sim.
          - apply fstore_sim.
          - apply flatmem_copy_sim.
          - apply vmxinfo_get_sim.
          - apply device_output_sim.
          - apply pfree_sim.
          - apply setPT_sim.
          - apply ptRead_sim.
          - apply ptResv_sim.
          - apply kctxt_new_sim.
          - apply shared_mem_status_sim.
          - apply offer_shared_mem_sim.
          - apply get_state_sim.
          - apply set_state_sim.
          - apply ptin_sim.
          - apply ptout_sim.
          - apply clearCR2_sim.
          - apply container_get_nchildren_sim.
          - apply container_get_quota_sim.
          - apply container_get_usage_sim.
          - apply container_can_consume_sim.
          - apply alloc_sim.
          - apply trapin_sim.
          - apply trapout_sim.
          - apply hostin_sim.
          - apply hostout_sim.
          - apply trap_info_get_sim.
          - apply trap_info_ret_sim.
          - apply kctxt_switch_sim.
          - layer_sim_simpl.
            + eapply load_correct2.
            + eapply store_correct2.
        Qed.

      End PASSTHROUGH_RPIM.

    End OneStep_Forward_Relation.

  End WITHMEM.

End Refinement.